首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   22篇
  2023年   3篇
  2022年   4篇
  2020年   3篇
  2019年   3篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   4篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2000年   3篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1990年   4篇
  1986年   3篇
  1982年   4篇
  1981年   3篇
  1974年   3篇
  1971年   3篇
  1970年   3篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1916年   2篇
  1907年   3篇
  1905年   5篇
  1904年   5篇
  1903年   2篇
  1902年   4篇
  1901年   4篇
  1900年   5篇
  1899年   5篇
  1897年   2篇
  1890年   2篇
  1888年   2篇
  1887年   4篇
  1882年   2篇
  1879年   2篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
91.
92.
93.
The ingestion of solutions containing carbohydrates with different intestinal transport mechanisms (e.g., fructose and glucose) produce greater carbohydrate and water absorption compared with single-carbohydrate solutions. However, the fructose-ingestion rate that results in the most efficient use of exogenous carbohydrate when glucose is ingested below absorption-oxidation saturation rates is unknown. Ten cyclists rode 2 h at 50% of peak power then performed 10 maximal sprints while ingesting solutions containing (13)C-maltodextrin at 0.6 g/min combined with (14)C-fructose at 0.0 (No-Fructose), 0.3 (Low-Fructose), 0.5 (Medium-Fructose), or 0.7 (High-Fructose) g/min, giving fructose:maltodextrin ratios of 0.5, 0. 8, and 1.2. Mean (percent coefficient of variation) exogenous-fructose oxidation rates during the 2-h rides were 0.18 (19), 0.27 (27), 0.36 (27) g/min in Low-Fructose, Medium-Fructose, and High-Fructose, respectively, with oxidation efficiencies (=oxidation/ingestion rate) of 62-52%. Exogenous-glucose oxidation was highest in Medium-Fructose at 0.57 (28) g/min (98% efficiency) compared with 0.54 (28), 0.48 (29), and 0.49 (19) in Low-Fructose, High-Fructose, No-Fructose, respectively; relative to No-Fructose, only the substantial 16% increase (95% confidence limits +/-16%) in Medium-Fructose was clear. Total exogenous-carbohydrate oxidation was highest in Medium-Fructose at 0.84 (26) g/min. Although the effect of fructose quantity on overall sprint power was unclear, the metabolic responses were associated with lower perceptions of muscle tiredness and physical exertion, and attenuated fatigue (power slope) in the Medium-Fructose and High-Fructose conditions. With the present solutions, low-medium fructose-ingestion rates produced the most efficient use of exogenous carbohydrate, but fatigue and the perception of exercise stress and nausea are reduced with moderate-high fructose doses.  相似文献   
94.
Bitterness is a flavor defect in Cheddar cheese that limits consumer acceptance, and specificity of the Lactococcus lactis extracellular proteinase (lactocepin) is widely believed to be a key factor in the development of bitter cheese. To better define the contribution of this enzyme to bitterness, we investigated peptide accumulation and bitterness in 50% reduced-fat Cheddar cheese manufactured with single isogenic strains of Lactococcus lactis as the only starter. Four isogens were developed for the study; one was lactocepin negative, and the others produced a lactocepin with group a, e, or h specificity. Analysis of cheese aqueous extracts by reversed-phase high-pressure liquid chromatography confirmed that accumulation of αS1-casein (f 1-23)-derived peptides f 1-9, f 1-13, f 1-16, and f 1-17 in cheese was directly influenced by lactocepin specificity. Trained sensory panelists demonstrated that Cheddar cheese made with isogenic starters that produced group a, e, or h lactocepin was significantly more bitter than cheese made with a proteinase-negative isogen and that propensity for bitterness was highest in cells that produced group h lactocepin. These results confirm the role of starter proteinase in bitterness and suggest that the propensity of some industrial strains for production of the bitter flavor defect in cheese could be altered by proteinase gene exchange or gene replacement.  相似文献   
95.
Fast milk-coagulating (Fmc+) strains of lactococci are known to segregate slow milk-coagulating (Fmc) variants, which has been attributed to loss of proteinase (Prt) activity encoded by plasmid DNA. It was found that the Fmcphenotype could also be due to loss of a plasmid encoding an oligopeptide permease (Opp) system. InLactococcus lactissubsp.lactis(L. lactis) C2O, lactose metabolism (Lac) and Prt were linked to pJK550 and the Opp system to pJK430. InLactococcus lactissubsp.cremorisSK11, known to possess Prt on a 78-kb plasmid, DNA sequence analysis of a 7.4-kb region from the Lac plasmid, pSK11L, revealed that it possessed the Opp system. The Lac plasmid inL. lactisC2 encoded both the Prt and Opp systems. Fmcderivatives ofL. lactisC2 were missing theprtgenes and had Opp integrated into the chromosome, possibly due to transposition events. Growth studies showed the Opp systems were functional and, in combination with Prt, produced the Fmc+phenotype.  相似文献   
96.
A mouse genomic clone containing a lactate dehydrogenase-A (LDH-A) processed pseudogene and a B1 repetitive element was isolated, and a nucleotide sequence of approximately 3 kb was determined. The pseudogene and B1 element are flanked by perfect 13-bp repeats, and the B1 sequence starts at 14 nucleotides 3' to the presumptive polyadenylation signal of the pseudogene. The nucleotide sequences of the LDH-A genes and processed pseudogenes from mouse, rat, and human were compared, and a phylogenetic tree was constructed. The rate and pattern of nucleotide substitutions in the LDH-A pseudogenes are similar to previously reported results (Li et al. 1984). The average rate of nucleotide substitutions in the LDH-A pseudogenes is 4.3 X 10(- 9)/site/year. The substitutions of C----T and G----A are most frequent, and A----G substitutions are relatively high. The rate of synonymous substitutions in the LDH-A genes is 5.3 X 10(-9), which is not significantly higher than the average rate of 4.7 X 10(-9) for 35 mammalian genes. The rate of nonsynonymous substitutions in the LDH-A genes is 0.20 X 10(-9), which is considerably lower than the average rate of 0.88 X 10(-9) for 35 mammalian genes. Thus, the mammalian LDH-A gene appears to be highly conserved in evolution.   相似文献   
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号