首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   9篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
41.
Antitumor T cells often recognize targets that are nonmutated "self" tissue differentiation Ags, but the relative impact of Ag expression by normal and transformed tissue for a human self/tumor Ag has not been studied. To examine the influence of self-tolerance mechanisms on the function of self/tumor-specific T cell responses in humans, we sought to identify an Ag that was expressed, processed, and presented in an MHC-restricted fashion by tumor cells, but for which there was the human equivalent of a "knockout." In this study, we report the first immunological characterization of a melanoma/melanocyte differentiation Ag, called OA1, which meets these criteria. This Ag, an X chromosome-encoded melanoma/melanocyte differentiation Ag, was completely deleted in a male patient. Using a newly identified HLA-A*2402-restricted epitope (LYSACFWWL) to study T cell tolerance, we found that OA1-specific T cell reactivity was more than five SD higher in the knockout patient that in normal controls. These data provide compelling evidence for T cell tolerance to OA1 in humans. Most surprisingly, we found elevated levels of OA1-specific T cells in patients with metastatic malignant melanoma, indicating that the tumor-bearing state partially reversed tolerance observed in normal (non-"knockout") individuals. Taken together, these findings indicated that tolerance can exist for self/tumor Ags in humans, and that this tolerance could be partially abrogated by the growth of the tumor, increasing the reactivity of tumor Ag-specific T cells. Thus, the tumor-bearing state reverses, in part, the tolerance of T cells that results from the normal expression of tissue differentiation Ags.  相似文献   
42.
43.
The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase. However, the molecular mechanisms by which these small molecules inhibit the enzyme have not been fully elucidated. There is evidence that allosteric inhibitors alter the intrinsic motions and distribution of conformations sampled by the enzyme. In this study we use molecular dynamics simulations to understand the structural and dynamic changes that result when inhibitors are bound at three different allosteric binding sites on the enzyme. We observe that ligand binding at each site alters the structure and dynamics of NS5B in a distinct manner. Nonetheless, our studies also highlight commonalities in the mechanisms of action of the different inhibitors. Each inhibitor alters the conformational states sampled by the enzyme, either by rigidifying the enzyme and preventing transitions between functional conformational states or by destabilizing the enzyme and preventing functionally relevant conformations from being adequately sampled. By illuminating the molecular mechanisms of allosteric inhibition, these studies delineate the intrinsic functional properties of the enzyme and pave the way for designing novel and more effective polymerase inhibitors. This information may also be important to understand how allosteric regulation occurs in related viral polymerases and other enzymes.  相似文献   
44.
Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides.  相似文献   
45.
Natural populations exhibit a great deal of interindividual genetic variation in the response to toxins, exemplified by the variable clinical efficacy of pharmaceutical drugs in humans, and the evolution of pesticide resistant insects. Such variation can result from several phenomena, including variable metabolic detoxification of the xenobiotic, and differential sensitivity of the molecular target of the toxin. Our goal is to genetically dissect variation in the response to xenobiotics, and characterize naturally-segregating polymorphisms that modulate toxicity. Here, we use the Drosophila Synthetic Population Resource (DSPR), a multiparent advanced intercross panel of recombinant inbred lines, to identify QTL (Quantitative Trait Loci) underlying xenobiotic resistance, and employ caffeine as a model toxic compound. Phenotyping over 1,700 genotypes led to the identification of ten QTL, each explaining 4.5–14.4% of the broad-sense heritability for caffeine resistance. Four QTL harbor members of the cytochrome P450 family of detoxification enzymes, which represent strong a priori candidate genes. The case is especially strong for Cyp12d1, with multiple lines of evidence indicating the gene causally impacts caffeine resistance. Cyp12d1 is implicated by QTL mapped in both panels of DSPR RILs, is significantly upregulated in the presence of caffeine, and RNAi knockdown robustly decreases caffeine tolerance. Furthermore, copy number variation at Cyp12d1 is strongly associated with phenotype in the DSPR, with a trend in the same direction observed in the DGRP (Drosophila Genetic Reference Panel). No additional plausible causative polymorphisms were observed in a full genomewide association study in the DGRP, or in analyses restricted to QTL regions mapped in the DSPR. Just as in human populations, replicating modest-effect, naturally-segregating causative variants in an association study framework in flies will likely require very large sample sizes.  相似文献   
46.
Naloxone reversal of morphine elicited hyperactivity   总被引:1,自引:0,他引:1  
P Schnur  D Hang 《Life sciences》1987,40(4):329-333
When naloxone is administered during morphine elicited hyperactivity, hyperactivity is reversed and hypoactivity occurs in its place. The present experiment tested the hypothesis that this effect is the result of morphine induced supersensitivity to naloxone. Two groups of hamsters received equivalent pretreatment with 15 mg/kg morphine (Groups M/M and M/S) for three days while a third group received saline (Group S/S). During subsequent testing one group received a morphine injection (Group M/M) while the others received saline (Groups M/S and S/S) before being placed in running wheels for a three hour session. Two hours later half the animals in each group received an injection of 0.4 mg/kg naloxone and half received saline. Naloxone produced hypoactivity in animals running under the influence of morphine (Group M/M), but neither in those with an equivalent history of morphine pre-treatment (Group M/S), nor in saline controls (Group S/S). These results are inconsistent with the hypothesis under test, but congruent with a modified dual-action hypothesis.  相似文献   
47.
48.
This paper describes two approaches for sensing changes in spiking cells when only a limited amount of spike data is available, i.e., dynamically constructed local expansion rates and spike area distributions. The two methods were tested on time series from cultured neuron cells that exhibit spiking both autonomously and in the presence of periodic stimulation. Our tested hypothesis was that minute concentrations of toxins could affect the local statistics of the dynamics. Short data sets having relatively few spikes were generated from experiments on cells before and after being treated with a small concentration of channel blocker. In spontaneous spiking cells, local expansion rates show a sensitivity that correlates with channel concentration level, while stimulated cells show no such correlation. Spike area distributions on the other hand showed measurable differences between control and treated conditions for both types of spiking, and a much higher degree of sensitivity. Because these methods are based on analysis of short time series analysis, they might provide novel means for cell drug and toxin detection.  相似文献   
49.
This report is a summary of a symposium entitled "Mother-to-Child Transmission (MTCT) of HIV and Drugs of Abuse in Highly Active Antiretroviral Therapy (HAART) Era," organized by The National Institute on Drug Abuse, National Institutes of Health in Rockville, Maryland, October 13, 2009. In the pre-HAART era, the prevalence of MTCT of HIV was about 25% and exposure of pregnant mothers to drugs of abuse (illicit drugs and tobacco smoking) was a significant factor in MTCT. However, with the introduction of HAART, the rate of MTCT of HIV has decreased to less that 2%. In the Unites States, it is estimated that currently about 5.1% of pregnant women use illicit drugs and 16.4% smoke tobacco. The residual prevalence of MTCT in the HAART era is still of concern and may be related to this continued prevalence of substance use among pregnant mothers. In this report, we review and present evidence that supports the hypothesis that drugs of abuse do have the potential to increase MTCT of HIV in the presence of HAART. Exposure to drugs of abuse during pregnancy may increase MTCT of HIV through a variety of mechanisms including possible damage to the placenta, induction of preterm birth, and increasing maternal plasma viral load through a variety of putative mechanisms such as: a) promoting HIV mutation and replication through non-adherence to HAART; b) impairing the efficacy of HAART through drug-drug interaction; and c) promoting HIV replication in monocyte/macrophages. Drugs of abuse may promote HIV replication by increasing the expression of CCR5 receptors, decreasing the expression of CCR5 receptor ligands, increasing the expression of CXCR4 receptors, increasing the expression of DC-SIGN, and possibly inducing epigenetic changes.  相似文献   
50.
Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号