首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21220篇
  免费   2141篇
  国内免费   12篇
  2023年   91篇
  2022年   180篇
  2021年   390篇
  2020年   238篇
  2019年   277篇
  2018年   338篇
  2017年   349篇
  2016年   483篇
  2015年   894篇
  2014年   974篇
  2013年   1066篇
  2012年   1522篇
  2011年   1453篇
  2010年   966篇
  2009年   867篇
  2008年   1206篇
  2007年   1308篇
  2006年   1044篇
  2005年   1096篇
  2004年   1091篇
  2003年   1037篇
  2002年   987篇
  2001年   338篇
  2000年   333篇
  1999年   302篇
  1998年   274篇
  1997年   181篇
  1996年   142篇
  1995年   136篇
  1994年   152篇
  1993年   132篇
  1992年   215篇
  1991年   214篇
  1990年   165篇
  1989年   171篇
  1988年   163篇
  1987年   162篇
  1986年   148篇
  1985年   172篇
  1984年   170篇
  1983年   123篇
  1982年   102篇
  1981年   115篇
  1980年   99篇
  1979年   98篇
  1978年   101篇
  1976年   91篇
  1974年   93篇
  1971年   76篇
  1970年   74篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
881.
882.
Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d-galactose catabolism are contained within a single protein-Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein-protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other.  相似文献   
883.
The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.  相似文献   
884.
Animal models have played an important part in establishing our knowledge base on reproduction, development, and the occurrence and impact of chromosome abnormalities. Translocations involving the X chromosome and an autosome are unique in that they elicit sex-dependent infertility, with male carriers rendered sterile by synaptic anomalies during meiosis, whereas female carriers conceive but repeatedly abort. Until now the limited access to relevant fetal oocytes has precluded direct study of meiotic events in female carriers. Because somatic cell nuclear transfer (SCNT) circumvents meiotic problems associated with fertility disturbances in translocation carriers, we used SCNT to generate embryos, fetuses, and calves from a cell line derived from a deceased subfertile X-autosome translocation carrier cow to study the meiotic configurations in carrier oocytes. Data from 33 replicates involving 2470 oocyte-donor-cell complexes were assessed for blastocyst development and of these, 42 blastocysts were transferred to 21 recipients. Fourteen pregnancies were detected on day 35 of gestation. One of these was sacrificed for ovary retrieval on day 94 and three went to term. Features of oocytes from the fetal ovary and from the newborn ovaries were examined. Of the pachytene spreads analyzed, 16%, 82%, and 1.5% exhibited quadrivalent, trivalent/univalent, and bivalent/univalent/univalent structures, respectively, whereas among the diakinesis/metaphase I spreads, 16% ring, 75% chain, and 8.3% bivalent/bivalent configurations were noted, suggesting that the low fertility among female carriers may be related to synaptic errors in a predominant proportion of oocytes. Our results indicate that fibroblasts carrying the X-autosome translocation can be used for SCNT to produce embryos, fetuses, and newborn clones to study such basic aspects of development as meiosis and to generate carriers that cannot easily be reproduced by conventional breeding.  相似文献   
885.
Faithful partitioning of genetic material during cell division requires accurate spatial and temporal positioning of nuclei within dividing cells. In Saccharomyces cerevisiae, nuclear positioning is regulated by an elegant interplay between components of the actin and microtubule cytoskeletons. Regulators of this process include Bud6p (also referred to as the actin-interacting protein Aip3p) and Kar9p, which function to promote contacts between cytoplasmic microtubule ends and actin-delimited cortical attachment points. Here, we present the previously undetected association of Bud6p with the cytoplasmic face of yeast spindle pole bodies, the functional equivalent of metazoan centrosomes. Cells lacking Bud6p show exaggerated movements of the nucleus between mother and daughter cells and display reduced amounts of time a given spindle pole body spends in close association with the neck region of budding cells. Furthermore, overexpression of BUD6 greatly enhances interactions between the spindle pole body and mother-bud neck in a spindle alignment-defective dynactin mutant. These results suggest that association of either spindle pole body with neck components, rather than simply entry of a spindle pole body into the daughter cell, provides a positive signal for the progression of mitosis. We propose that Bud6p, through its localization at both spindle pole bodies and at the mother-bud neck, supports this positive signal and provides a regulatory mechanism to prevent excessive oscillations of preanaphase nuclei, thus reducing the likelihood of mitotic delays and nuclear missegregation.  相似文献   
886.
Identifying proteins that interact with small molecules is often a challenging step in understanding cellular signaling pathways or molecular mechanisms of drug action. In this report, we describe the construction of libraries displaying human protein fragments on the surface of yeast cells and demonstrate the utility of these libraries for the study of small molecule/protein interactions. The libraries were used to select protein fragments with affinity for the phosphatidylinositides phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). We recovered cDNA inserts encoding pleckstrin homology domains, a phosphotyrosine-binding domain, and a fragment of apolipoprotein H. The pleckstrin homology and phosphotyrosine-binding domains are known phosphatidylinositide-binding domains, demonstrating the effectiveness of our approach. Binding of apolipoprotein H to PtdIns(4,5)P2 and PtdIns(3,4,5)P3 has not been reported previously and thus represents novel interactions. We expect that this method will be generally applicable to the study of small molecule/protein interactions and may facilitate the study of cellular signaling pathways and mechanisms of drug action or toxicity.  相似文献   
887.
888.
889.
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号