首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1579篇
  免费   127篇
  1706篇
  2023年   10篇
  2022年   14篇
  2021年   24篇
  2020年   20篇
  2019年   19篇
  2018年   17篇
  2017年   30篇
  2016年   43篇
  2015年   68篇
  2014年   95篇
  2013年   91篇
  2012年   118篇
  2011年   123篇
  2010年   80篇
  2009年   65篇
  2008年   88篇
  2007年   89篇
  2006年   73篇
  2005年   79篇
  2004年   51篇
  2003年   72篇
  2002年   62篇
  2001年   35篇
  2000年   34篇
  1999年   29篇
  1998年   14篇
  1997年   14篇
  1996年   20篇
  1995年   8篇
  1994年   6篇
  1992年   8篇
  1991年   7篇
  1990年   15篇
  1989年   22篇
  1988年   10篇
  1987年   14篇
  1986年   9篇
  1985年   4篇
  1984年   14篇
  1983年   9篇
  1982年   9篇
  1981年   12篇
  1979年   14篇
  1978年   7篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1968年   6篇
  1853年   3篇
排序方式: 共有1706条查询结果,搜索用时 0 毫秒
941.
942.
Fusion of enveloped viruses with their target membrane is mediated by viral integral glycoproteins. A conformational change of their ectodomain triggers membrane fusion. Several studies suggest that an extended, triple-stranded rod-shaped -helical coiled coil resembles a common structural and functional motif of the ectodomain of fusion proteins. From that, it is believed that essential features of the fusion process are conserved among the various enveloped viruses. However, this has not been established so far for the highly conserved transmembrane and intraviral sequences of fusion proteins. The article will focus on the role of both sequences in the fusion process. Recent studies from various enveloped viruses strongly imply that a transmembrane domain with a minimum length is required for later steps of membrane fusion, i.e., the formation and enlargement of the aqueous fusion pore. Although no specific sequence of the TM is necessary for pore formation, distinct properties and motifs of the domain may be obligatory to ascertain full fusion activity. However, with some exceptions, the intraviral domain seems to be not required for fusion activity of viral fusion proteins.  相似文献   
943.
Riboflavin (vitamin B(2)) is the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide, essential components of cellular biochemistry. In this work we investigated the unrelated proteins YpaA from Bacillus subtilis and PnuX from Corynebacterium glutamicum for a role in riboflavin uptake. Based on the regulation of the corresponding genes by a riboswitch mechanism, both proteins have been predicted to be involved in flavin metabolism. Moreover, their primary structures suggested that these proteins integrate into the cytoplasmic membrane. We provide experimental evidence that YpaA is a plasma membrane protein with five transmembrane domains and a cytoplasmic C terminus. In B. subtilis, riboflavin uptake was increased when ypaA was overexpressed and abolished when ypaA was deleted. Riboflavin uptake activity and the abundance of the YpaA protein were also increased when riboflavin auxotrophic mutants were grown in limiting amounts of riboflavin. YpaA-mediated riboflavin uptake was sensitive to protonophors and reduced in the absence of glucose, demonstrating that the protein requires metabolic energy for substrate translocation. In addition, we demonstrate that PnuX from C. glutamicum also is a riboflavin transporter. Transport by PnuX was not energy dependent and had high apparent affinity for riboflavin (K(m) 11 microM). Roseoflavin, a toxic riboflavin analog, appears to be a substrate of PnuX and YpaA. We propose to designate the gene names ribU for ypaA and ribM for pnuX to reflect that the encoded proteins function in riboflavin uptake and that the genes have different phylogenetic origins.  相似文献   
944.
In this report, a genome-scale reconstruction of Bacillus subtilis metabolism and its iterative development based on the combination of genomic, biochemical, and physiological information and high-throughput phenotyping experiments is presented. The initial reconstruction was converted into an in silico model and expanded in a four-step iterative fashion. First, network gap analysis was used to identify 48 missing reactions that are needed for growth but were not found in the genome annotation. Second, the computed growth rates under aerobic conditions were compared with high-throughput phenotypic screen data, and the initial in silico model could predict the outcomes qualitatively in 140 of 271 cases considered. Detailed analysis of the incorrect predictions resulted in the addition of 75 reactions to the initial reconstruction, and 200 of 271 cases were correctly computed. Third, in silico computations of the growth phenotypes of knock-out strains were found to be consistent with experimental observations in 720 of 766 cases evaluated. Fourth, the integrated analysis of the large-scale substrate utilization and gene essentiality data with the genome-scale metabolic model revealed the requirement of 80 specific enzymes (transport, 53; intracellular reactions, 27) that were not in the genome annotation. Subsequent sequence analysis resulted in the identification of genes that could be putatively assigned to 13 intracellular enzymes. The final reconstruction accounted for 844 open reading frames and consisted of 1020 metabolic reactions and 988 metabolites. Hence, the in silico model can be used to obtain experimentally verifiable hypothesis on the metabolic functions of various genes.  相似文献   
945.
Dodecins are so far the smallest known flavoproteins (68-71 amino acids) and are most likely involved in prokaryotic flavin storage. The dodecin monomers adopt a simple betaalphabetabeta-fold and assemble to hollow sphere-like dodecameric complexes. Flavin binding by the dodecin from Thermus thermophilus showed a 1:1 stoichiometry and apparent dissociation constants in the submicromolar to nanomolar range as characterized by isothermal titration calorimetry and fluorescence titrations. The x-ray structures of the flavin-prebound and FMN-reconstituted state of the T. thermophilus dodecin revealed binding of FMN dimers in a novel si-si- rather than the re-re- orientation of their isoalloxazine moieties as found before in an archaeal dodecin. Electron paramagnetic resonance studies demonstrated that upon reduction the excess electron is localized only on one flavin, thus making dodecin-bound flavins highly refractory to redox chemistry. Besides FMN dimers, trimers of coenzyme A are additionally bound to this eubacterial dodecin along the 3-fold symmetry face II of the dodecin complex. Therefore, dodecins can act as bifunctional cofactor storage proteins that sequester catalytic cofactors in prokaryotes very efficiently in an aggregated and unreactive state.  相似文献   
946.
Recent findings suggest that hypoxia of the tumor microenvironment contributes to immune escape from natural killer (NK) cell-mediated cytotoxicity. Heat shock protein 70 (Hsp70) and the stress-regulated major histocompatibility class I chain-related protein A and B (MICA/B) both serve as ligands for activated NK cells when expressed on the cell surface of tumor cells. Herein, we studied the effects of hypoxia and hypoxia-inducible factor-1α (HIF-1α) on the membrane expression of these NK cell ligands in H1339 with high and MDA-MB-231 tumor cells with low basal HIF-1α levels and its consequences on NK cell-mediated cytotoxicity. We could show that a hypoxia-induced decrease in the membrane expression of MICA/B and Hsp70 on H1339 and MDA-MB-231 cells, respectively, is associated with a reduced sensitivity to NK cell-mediated lysis. A knockdown of HIF-1α revealed that the decreased surface expression of MICA/B under hypoxia is dependent on HIF-1α in H1339 cells with high basal HIF-1α levels. Hypoxia and HIF-1α did not affect the MICA/B expression in MDA-MB-231 cells but reduced the Hsp70 membrane expression which in turn also impaired NK cell recognition. Furthermore, we could show that the hypoxia-induced decrease in membrane Hsp70 is independent of HIF-1α in MDA-MB-231. Our data indicate that hypoxia-induced downregulation of both NK cell ligands MICA/B and Hsp70 impairs NK cell-mediated cytotoxicity, whereby only MICA/B appears to be regulated by HIF-1α.  相似文献   
947.
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   
948.
Portal branch ligation (PBL) may prevent liver failure after extended hepatic resection. However, clinical studies indicate that tumors within the ligated lobe develop accelerated growth. Although it is well known that tumor growth depends on the host's microvascularization, there is no information about how PBL affects the hepatic microcirculation. Our aims were to determine hepatic artery response, liver microcirculation, tissue oxygenation, and cell proliferation after PBL. Therefore, we used intravital multifluorescence microscopy, laser-Doppler flowmetry, immunohistochemistry, and biochemical techniques to examine microcirculatory responses, microvascular remodeling, and cellular consequences after left lateral PBL in BALB/c mice. During the first 7 days, PBL induced a reduction of left hilar blood flow by approximately 50%. This resulted in 80% sinusoidal perfusion failure, significant parenchymal hypoxia, and liver atrophy. After 14 days, however, left hilar blood flow was found to be restored. However, remodeling of the microvasculature included a rarefaction of the sinusoidal network, however, without substantial perfusion failure, compensated by a hepatic arterial buffer response and significant sinusoidal dilatation. This resulted in normalization of tissue oxygenation, indicating arterialization of the ligated lobe. Interestingly, late microvascular remodeling was associated with increased endothelial nitric oxide synthase expression, significant hepatocellular proliferation, and weight gain of the ligated lobe. Thus PBL induces only an initial microcirculatory failure with liver atrophy, followed by a hepatic arterial buffer response, microvascular remodeling, normoxygenation, and hepatocellular proliferation. This may explain the accelerated tumor progression occasionally observed in patients after PBL.  相似文献   
949.
Staphylococcus saprophyticus, an important cause of urinary tract infections, produces a surface-associated lipase, Ssp. In contrast to other lipases, Ssp is a protein that is present in high amounts on the surface of the bacteria and it was shown that it is a true lipase. Characterization of S. saprophyticus lipase (Ssp) showed that it is more similar to Staphylococcus aureus lipase and Staphylococcus epidermidis lipase than to Staphylococcus hyicus lipase and Staphylococcus simulans lipase. Ssp showed an optimum of lipolytic activity at pH 6 and lost its activity at pH>8 or pH<5. The present results show that Ssp activity is dependent on Ca(2+). Consequently, activity increased c. 10-fold in the presence of 2 mM Ca(2+). Optimal activity was reached at 30 degrees C. It was also observed that the enzymatic activity of Ssp depends strongly on the acyl chain length of the substrate molecule.  相似文献   
950.
We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable τ (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain −∞ < t < ∞. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation (‘short’ relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t ≤ 0, and then, at t=0 the cell line is exposed to cancer therapy. This corresponds to a change in the transition rate functions and perhaps incorporation of additional phases of the cell cycle. We discuss a number of these cancer therapies and applications of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号