首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   62篇
  2023年   7篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   17篇
  2016年   34篇
  2015年   37篇
  2014年   64篇
  2013年   65篇
  2012年   79篇
  2011年   86篇
  2010年   53篇
  2009年   46篇
  2008年   63篇
  2007年   52篇
  2006年   44篇
  2005年   49篇
  2004年   31篇
  2003年   46篇
  2002年   39篇
  2001年   9篇
  2000年   5篇
  1999年   13篇
  1998年   8篇
  1997年   6篇
  1996年   10篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   7篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1971年   1篇
  1968年   1篇
  1955年   1篇
排序方式: 共有940条查询结果,搜索用时 15 毫秒
71.
This review, comprised of our own data and that of others, provides a summary overview of histone deacetylase (HDAC) inhibition on intestinal inflammation as well as inflammation-mediated carcinogenesis. Experimental colitis in mice represents an excellent in vivo model to define the specific cell populations and target tissues modulated by inhibitors of HDAC. Oral administration of either suberyolanilide hydroxamic acid (SAHA) or ITF2357 results in an amelioration in these models, as indicated by a significantly reduced colitis disease score and histological score. This effect was paralleled by suppression of proinflammatory cytokines at the site of inflammation as well as specific changes in the composition of cells within the lamina propria. In addition, tumor number and size was significantly reduced in two models of inflammation-driven tumorigenesis, namely interleukin (IL)-10-deficient mice and the azoxymethane-dextran sulfate sodium (DSS) model, respectively. The mechanisms affected by HDAC inhibition, contributing to this antiinflammatory and antiproliferative potency will be discussed in detail. Furthermore, with regard to the relevance in human inflammatory bowel disease, the doses of ITF2357 considered safe in humans and the corresponding serum concentrations are consistent with the efficacious dosing used in our in vivo as well as in vitro experiments. Thus, the data strongly suggest that HDAC inhibitors could serve as a therapeutic option in inflammatory bowel disease.  相似文献   
72.
COPI (coat protein I)-coated vesicles are implicated in various transport steps within the early secretory pathway. The major structural component of the COPI coat is the heptameric complex coatomer (CM). Recently, four isoforms of CM were discovered that may help explain various transport steps in which the complex has been reported to be involved. Biochemical studies of COPI vesicles currently use CM purified from animal tissue or cultured cells, a mixture of the isoforms, impeding functional and structural studies of individual complexes. Here we report the cloning into single baculoviruses of all CM subunits including their isoforms and their combination for expression of heptameric CM isoforms in insect cells. We show that all four isoforms of recombinant CM are fully functional in an in vitro COPI vesicle biogenesis assay. These novel tools enable functional and structural studies on CM isoforms and their subcomplexes and allow studying mutants of CM.  相似文献   
73.
The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.  相似文献   
74.
Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport.Our concept of biological membranes has markedly changed in the last two decades, from the fluid mosaic model (Singer and Nicolson 1972), in which the membrane was thought to be formed by a homogenous lipid fluid phase with proteins embedded, to the current model that lipids and proteins are not homogenously distributed, but have the ability to separate into microdomains, differing in their protein and lipid compositions. A well established example of domains are lipid rafts (see Box 1 for definitions). Raft domains are described as dynamic domain structures enriched in cholesterol, sphingolipids, and membrane proteins (Brown and London 1998; Simons and Ikonen 1997) that have an important role in different cellular processes (Lingwood and Simons 2010). Formation of domains within cellular membranes has been extensively investigated over the past years leading to various models that differ in the primary forces involved in the formation and the recruitment of surrounding membrane components into such domains.

BOX 1.

Definitions

Annular Lipids/Lipid Shell

An annular lipid shell is formed when selected lipid classes or molecular species bind preferentially to the hydrophobic and/or hydrophilic surfaces of a membrane protein. Per definition these lipids show markedly reduced residence times at the protein–lipid interface as compared to bulk lipids.

Bulk Lipids

Lipids within the membrane that diffuse rapidly in the bilayer plane and show a low residence time at the protein–lipid interface following random collisions. Typical diffusion coefficients for bulk lipids in a liquid disordered phase are in the range of DL = 7×10−12 m2/sec (DOPC) (Filippov et al. 2003).

Hydrophobic Mismatch

A term to describe any deviation from the compatibility of the hydrophobic surface of membrane proteins (their TMDs) to the vertically and laterally encountered hydrophobic surfaces of the lipid bilayer in biological membranes. In the case of a hydrophobic mismatch, the resulting energy penalty may cause the recruitment of a suitable local lipid environment, the deformation of the membrane and/or in conformational changes of the protein to achieve a status of hydrophobic match (for advanced reading, see Killian 1998).

Lateral Pressure Field/Profile of Membranes

Biological membranes can be considered as the “solvent” for membrane proteins that are embedded in them. The lateral pressure profile (Ω(z)) describes the force or pressure that is exerted by the membrane on the matter residing inside it. This pressure is modulated by different extents of lipid–lipid interactions and asymmetries across and within the bilayer, which in turn results in varying lateral pressures that may locally correspond to several hundreds of atmospheres.

Lipid Rafts

Sterol and sphingolipid-dependent microdomains that form a network of lipid–lipid, protein–protein, and protein–lipid interactions; involved in the compartmentalization of processes such as signaling within biological membranes.

Liquid-Disordered Phase (Id)

A predominantly fluid phase of lipids, characterized by a high degree of mobility (cis-gauche flexibility of acyl chains; lateral diffusion) and a high content of short and/or unsaturated fatty acyl chains.

Liquid-Ordered Phase (Io)

A liquid crystalline phase (that displays physical properties of both liquids and of solid crystals), characterized by a high degree of acyl chain order (“packing”), a reduced lateral mobility of lipid and protein molecules, and a reduction in the elasticity of the membrane as a result of specific interactions between sterols and phospholipids containing long, saturated acyl chains and/or glycosphingolipids.

Microdomains

Membrane compartments of distinct lipid and protein composition that may modulate the enzymatic functions of membrane proteins.

Molecular Lipid Species

Individual members of a lipid class that differ in their fatty acid composition.

Nonannular Lipids

Lipids that specifically interact with membrane proteins are neither bulk lipids, nor do they belong to the shell/annulus of lipids that surround the membrane protein. These nonannular lipids often reside within membrane protein complexes, in which they may fulfill diverse functions ranging from structural building blocks to allosteric effectors of enzymatic activity (see text). Nonannular lipids bind to distinct hydrophobic sites of membrane proteins or membrane protein complexes.According to one model, membrane domains can form by specific protein–protein interactions (Douglass and Vale 2005). This model is based on single-molecule microscopy experiments. In these studies, single fluorophores were chemically attached to specific proteins, and the dynamics of individual proteins was tracked by monitoring the fluorescent probe. In this kind of set up, a dynamic behavior of lipids is not assessed. Here, proteins involved in signaling processes are trapped within interconnected microdomains created by specific protein–protein interactions, probably involving additional scaffolding proteins. The proteins of such domains can exchange with the surrounding membrane area at individual kinetics, some components are immobile over minutes, and others can diffuse rapidly.Another model emphasizes the importance of lipid–lipid interactions, initiating the formation of subdomains of defined lipid compositions. Transmembrane proteins then can be attracted to such subdomains via various specific interactions with lipids. The resulting lipid–protein complexes then eventually coalesce to form larger lipid–protein assemblies (Anderson and Jacobson 2002).The idea of lipid-dependent domain formation is inherent to the biophysical properties and therefore to the complex lipid composition of cellular membranes that include up to a thousand lipids that vary in structure (van Meer et al. 2008). This wide range of lipid species has been proposed to facilitate the “solvation” of membrane proteins. Taken into account the sum of lipid species present in a cellular membrane, it is important to understand the different interactions and affinities within the bilayer between different lipids. Molecular dynamics simulations have been successfully employed to investigate lipid interactions between different lipid species and found specific interactions of various lipid classes and molecular species (Hofsass et al. 2003; Niemela et al. 2004, 2006, 2009; Pandit et al. 2004; Zaraiskaya and Jeffrey 2005; Bhide et al. 2007). These results are supported and expanded by recent data from our group that suggest a specific order of interactions of sphingomyelin species with cholesterol in membranes (A.M. Ernst, F. Wieland, and B. Brügger, unpubl.). At low cholesterol concentrations, some sphingomyelin species preferentially interact with cholesterol, whereas others prefer their kin. At higher cholesterol concentrations, all sphingomyelin species investigated display an increased affinity for the sterol. These findings open the possibility of differentiated pathways of self-assembly of microdomains, dependent on molecular lipid species.In the present article the various modes of intramembrane protein–lipid interactions in cellular membranes (Fig. 1) will be discussed. This includes possible functional roles of such specific protein–lipid interactions.Open in a separate windowFigure 1.Intramembrane protein–lipid interactions within a cell membrane. (A) Bulk lipids; (B) annular lipids; (C) nonannular lipids/lipid ligands. For details see text.  相似文献   
75.
Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.  相似文献   
76.
Reuter T  Renner B 《PloS one》2011,6(7):e22130

Background

In order to fight the spread of the novel H1N1 influenza, health authorities worldwide called for a change in hygiene behavior. Within a longitudinal study, we examined who collected a free bottle of hand sanitizer towards the end of the first swine flu pandemic wave in December 2009.

Methods

629 participants took part in a longitudinal study assessing perceived likelihood and severity of an H1N1 infection, and H1N1 influenza related negative affect (i.e., feelings of threat, concern, and worry) at T1 (October 2009, week 43–44) and T2 (December 2009, week 51–52). Importantly, all participants received a voucher for a bottle of hand sanitizer at T2 which could be redeemed in a university office newly established for this occasion at T3 (ranging between 1–4 days after T2).

Results

Both a sequential longitudinal model (M2) as well as a change score model (M3) showed that greater perceived likelihood and severity at T1 (M2) or changes in perceived likelihood and severity between T1 and T2 (M3) did not directly drive protective behavior (T3), but showed a significant indirect impact on behavior through H1N1 influenza related negative affect. Specifically, increases in perceived likelihood (β = .12), severity (β = .24) and their interaction (β = .13) were associated with a more pronounced change in negative affect (M3). The more threatened, concerned and worried people felt (T2), the more likely they were to redeem the voucher at T3 (OR = 1.20).

Conclusions

Affective components need to be considered in health behavior models. Perceived likelihood and severity of an influenza infection represent necessary but not sufficient self-referential knowledge for paving the way for preventive behaviors.  相似文献   
77.
To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naïve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001). HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb) titers against subtype A (p = 0.05) and subtype CRF02_AG (p = 0.02) viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (p = 0.02) and mean titer against the 10 viruses (p = 0.0002). In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001). These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection.  相似文献   
78.
IL-33, an IL-1 family member and ligand for the IL-1 receptor-related protein ST2, has been associated with induction of Th2 cytokines such as IL-4, IL-5, and IL-13. Here, we report that IL-33 can initiate IL-9 protein secretion in vitro in human CD4+ T cells and basophils isolated from peripheral blood. TGF-β has been described as a critical factor for IL-9 induction in Th2 cells; however, we found that TGF-β also induces co-production of IL-9 in purified, naïve (>99%) CD4+CD45RA+CD45ROCD25 T cells differentiated towards a Th1 profile. Subsequently, it was demonstrated that TGF-β is important, although not an absolute requirement, for IL-9 production in CD4+ T cells. IL-9 production by purified (>95%) human basophils, cultured for 24 h with IL-3 or IL-33, was found, with a strong synergy between the two, likely to be explained by the IL-3 upregulated ST2 expression. Collectively, these data indicate that barrier functioning cells are important for the regulation of IL-9 production by immune cells in inflamed tissue.  相似文献   
79.
80.
The testicular efferent duct system of Leuciscus cephalus (Cyprinidae), is described for three phases of testicular development. Testicular main ducts were analyzed by means of conventional histology and transmission electron microscopy. Additional techniques were applied for lectin histochemistry to determine secretory activity, as well as immunohistochemistry for cell proliferation activity and for muscle actin to demonstrate the distribution and amount of contractile cells. The contribution of the main ducts' epithelia and of degenerating spermatocytes to seminal fluid composition was confirmed, with the former being a source of carbohydrates and the latter that of phospholipids. The apical glycocalyx of epithelial cells, which is important in cell recognition and potentially involved in sperm storage, was marked by RCA I, LCA, and WGA lectin. Higher numbers of proliferating epithelial cells were ascertained during spawning phase compared to pre- and postspawning phases. In the ducts' stroma, a large number of cells expressed muscle actin and tropomyosin, indicating the ducts' contractile potential for the transport of seminal fluid towards release. Adjacent to these contractile cells, numerous nerves were found, indicating neuronal control of sperm fluid flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号