首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   135篇
  国内免费   1篇
  2022年   10篇
  2021年   12篇
  2020年   11篇
  2019年   14篇
  2018年   18篇
  2017年   10篇
  2016年   14篇
  2015年   52篇
  2014年   45篇
  2013年   52篇
  2012年   67篇
  2011年   60篇
  2010年   34篇
  2009年   34篇
  2008年   53篇
  2007年   50篇
  2006年   58篇
  2005年   54篇
  2004年   55篇
  2003年   43篇
  2002年   40篇
  2001年   35篇
  2000年   48篇
  1999年   29篇
  1998年   19篇
  1997年   11篇
  1996年   17篇
  1995年   19篇
  1994年   12篇
  1993年   9篇
  1992年   31篇
  1991年   16篇
  1990年   27篇
  1989年   9篇
  1988年   20篇
  1987年   18篇
  1986年   24篇
  1985年   9篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   11篇
  1977年   9篇
  1974年   8篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1257条查询结果,搜索用时 592 毫秒
961.
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.  相似文献   
962.
963.

Purpose

The aim of this study was to evaluate a human meibomian gland epithelial cell line (HMGEC) as a model for meibomian gland (patho)physiology in vitro.

Methods

HMGEC were cultured in the absence or presence of serum. Sudan III lipid staining, ultrastructural analysis and lipidomic analyses were performed. Impedance sensing, desmoplakin 1/2 mRNA and cytokeratin (CK) 1, 5, 6, 14 levels were evaluated. Serum containing medium supplemented with higher serum, glucose, an omega-3 lipid cocktail, eicosapentaenoic acid or sebomed medium were investigated for lipid accumulation and ultrastructural morphology.

Results

Lipid droplet accumulation in HMGEC was induced by serum containing media after 1 day, but decreased over time. Cultivation in serum induced desmosome and cytokeratin filament formation. Desmoplakin 1/2 gene levels were significantly upregulated after 1d of serum treatment. Furthermore, the normalized impedance increased significantly. Lipidome analysis revealed high levels of phospholipids (over 50%), but very low levels of wax ester and cholesteryl esters (under 1%). Stimulation with eicosapentaenoic acid increased lipid accumulation after one day.

Conclusion

Serum treatment of HMGEC caused lipid droplet formation to some extent but also induced keratinization. The cells did not produce typical meibum lipids under these growth conditions. HMGEC are well suited to study (hyper)keratinization processes of meibomian gland epithelial cells in vitro.  相似文献   
964.
IntroductionDespite implementation of the biological passport to detect erythropoietin abuse, a need for additional biomarkers remains. We used a proteomic approach to identify novel serum biomarkers of prolonged erythropoiesis-stimulating agent (ESA) exposure (Darbepoietin-α) and/or aerobic training.MethodsSerum proteins were separated according to charge and molecular mass (2D-gel electrophoresis). The identity of proteins from spots exhibiting altered intensity was determined by mass spectrometry.ResultsSix protein spots changed in response to Darbepoietin-α treatment. Comparing all 4 experimental groups, two protein spots (serotransferrin and haptoglobin/haptoglobin related protein) showed a significant response to Darbepoietin-α treatment. The haptoglobin/haptoglobin related protein spot showed a significantly lower intensity in all subjects in the training-ESA group during the treatment period and increased during the washout period.ConclusionAn isoform of haptoglobin/haptoglobin related protein could be a new anti-doping marker and merits further research.

Trial Registration

ClinicalTrials.gov NCT01320449  相似文献   
965.
966.
Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice.  相似文献   
967.
Precautionary conservation and cooperative global governance are needed to protect Antarctic blue carbon: the world's largest increasing natural form of carbon storage with high sequestration potential. As patterns of ice loss around Antarctica become more uniform, there is an underlying increase in carbon capture‐to‐storage‐to‐sequestration on the seafloor. The amount of carbon captured per unit area is increasing and the area available to blue carbon is also increasing. Carbon sequestration could further increase under moderate (+1°C) ocean warming, contrary to decreasing global blue carbon stocks elsewhere. For example, in warmer waters, mangroves and seagrasses are in decline and benthic organisms are close to their physiological limits, so a 1°C increase in water temperature could push them above their thermal tolerance (e.g. bleaching of coral reefs). In contrast, on the basis of past change and current research, we expect that Antarctic blue carbon could increase by orders of magnitude. The Antarctic seafloor is biophysically unique and the site of carbon sequestration, the benthos, faces less anthropogenic disturbance than any other ocean continental shelf environment. This isolation imparts both vulnerability to change, and an avenue to conserve one of the world's last biodiversity refuges. In economic terms, the value of Antarctic blue carbon is estimated at between £0.65 and £1.76 billion (~2.27 billion USD) for sequestered carbon in the benthos around the continental shelf. To balance biodiversity protection against society's economic objectives, this paper builds on a proposal incentivising protection by building a ‘non‐market framework’ via the 2015 Paris Agreement to the United Nations Framework Convention on Climate Change. This could be connected and coordinated through the Antarctic Treaty System to promote and motivate member states to value Antarctic blue carbon and maintain scientific integrity and conservation for the positive societal values ingrained in the Antarctic Treaty System.  相似文献   
968.
The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein–coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein–coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.  相似文献   
969.
Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.  相似文献   
970.
Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号