首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   54篇
  252篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2008年   18篇
  2007年   11篇
  2006年   14篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   12篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
  1902年   1篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
211.
212.
213.
Janus kinase 2 (Jak2) has a pivotal role in erythropoietin (Epo) signaling pathway, including erythrocyte differentiation and Stat5 activation. In the course of screening for critical phosphorylation of tyrosine residues in Jak2, we identified tyrosine 913 (Y(913)) as a novel and functional phosphorylation site, which negatively regulates Jak2. Phosphorylation at Y(913) rapidly occurred and was sustained for at least 120 min after Epo stimulation, in contrast to the transient phosphorylation of Y(1007/1008) in the activation loop of Jak2. Interestingly, phosphorylation defective mutation of Y(913) (Y(913)F) results in a significant enhancement of Epo-induced Jak2 activation, whereas phosphorylation mimic mutation of Y(913) (Y(913)E) completely abrogated its activation. Furthermore, Jak2 deficient fetal liver cells expressing Y(913)F mutant generated many mature erythroid BFU-E and CFU-E colonies, while Y(913)E mutant failed to reconstitute Jak2 deficiency. We also demonstrate, in Jak1, phosphorylation of Y(939), a corresponding tyrosine residue with Y(913), negatively regulated Jak1 signaling pathway. Accordingly, our results suggest that this tyrosine phosphorylation in JH1 domain may be involved in common negative regulation mechanism for Jak family.  相似文献   
214.
Autoimmune pancreatitis (AIP) is a rare cause of chronic pancreatitis and mimics pancreatic cancer. Although there is strong interest in research, etiology and pathophysiology of AIP are still unknown. Therefore, we analyzed a total of 92 MRL/Mp-mice of either sex, which are prone to develop AIP, in four different age groups (8-12, 16-20, 24-28, and 32-40 wk). Using intravital fluorescence microscopy, histology, laboratory analysis, and Western blot, onset, severity, and pathophysiological mechanisms of AIP were evaluated. Female animals showed in vivo an age-dependent increase of intrapancreatic leukocyte accumulation, as well as a loss in functional capillary perfusion. In contrast, intrapancreatic inflammation in male mice was less pronounced and not age dependent. Furthermore, pancreatic tissue specimen of female animals exhibited major organ destruction with significantly higher values of mean pathological scores (1.5 +/- 0.3 vs. < or =0.2; P < 0.05), as well as significantly increased CD4-, CD8-, CD11b-, and CD138-positive cells compared with male animals of the same age. Interestingly, there was a significant positive correlation between intravascular leukocyte adherence and the histopathological score of the pancreas, indicating a determining role of the innate immune system for the late onset of AIP. The present study shows that the onset of AIP is characterized by an inflammatory response and microcirculatory failure, most probably constituting initiators and propagators of this autoimmune disease.  相似文献   
215.
Mice nullizygous for Plcg1 cease growing at early to mid-gestation. An examination of carefully preserved wild-type embryos shows clear evidence of erythropoiesis, but erythropoiesis is not evident in Plcg1 nullizygous embryos at the same stage. The analyses of embryonic materials demonstrate that in the absence of Plcg1, erythroid progenitors cannot be detected in the yolk sac or embryo body by three different assays, burst-forming units, colony-forming units, and analysis for the developmental marker Ter119. However, non-erythroid granulocyte/macrophage colonies are produced by Plcg1 null embryos. Further analysis of these embryos demonstrates significantly diminished vasculogenesis in Plcg1 nullizygous embryos based on the lack of expression of the endothelial marker platelet endothelial cell adhesion molecule-1. In addition, Plcg1 nullizygous embryos express a greatly reduced level of vascular endothelial growth factor receptor-2/Flk-1, consistent with significantly impaired vasculogenesis and erythropoiesis. Interestingly, these early embryos do express phospholipase C-gamma2, however, it is unable to substitute for the absence of phospholipase C-gamma1, which can be detected in its tyrosine-phosphorylated state.  相似文献   
216.
217.
Many receptor and nonreceptor tyrosine kinases activate phosphoinositide 3-kinases (PI3Ks). To assess the role of the delta isoform of the p110 catalytic subunit of PI3Ks, we derived enzyme-deficient mice. The mice are viable but have decreased numbers of mature B cells, a block in pro-B-cell differentiation, and a B1 B-cell deficiency. Both immunoglobulin M receptor-induced Ca(2+) flux and proliferation in response to B-cell mitogens are attenuated. Immunoglobulin levels are decreased substantially. The ability to respond to T-cell-independent antigens is markedly reduced, and the ability to respond to T-cell-dependent antigens is completely eliminated. Germinal center formation in the spleen in response to antigen stimulation is disrupted. These results define a nonredundant signaling pathway(s) utilizing the delta isoform of p110 PI3K for the development and function of B cells.  相似文献   
218.
FVIIa binding to tissue factor (TF) and subsequent signal transduction have now been implicated in a variety of pathophysiological processes, including cytokine production during sepsis, tumor angiogenesis and neoangiogenesis, and leukocyte diapedesis. The molecular details, however, by which FVIIa/TF affects gene expression and cellular physiology, remain obscure. Here we show that FVIIa induces a transient phosphorylation of p70/p85(S6K) and p90(RSK) in BHK cells stably transfected with either full-length TF or with a cytoplasmic domain-truncated TF but not in wild type BHK cells. Phosphorylation of these kinases was also observed in HaCaT cells, expressing endogenous TF. Phosphorylation of p70/p85(S6K) coincided with protein kinase B and GSK-3beta phosphorylation. Activation of p70/p85(S6K) was sensitive to inhibitors of phosphatidylinositol 3-kinase and to rapamycin, whereas phosphorylation of p90(RSK) was sensitive to PD98059. FVIIa stimulation of p70/p85(S6K) and p90(RSK) correlated with phosphorylation of the eukaryotic initiation factor eIF-4E, up-regulation of protein levels of eEF1alpha and eEF2, and enhanced [(35)S]methionine incorporation. These effects were not influenced by inhibitors of thrombin or FXa generation and were strictly dependent on the presence of the extracellular domain of TF, but they did not require the intracellular portion of TF. We propose that a TF cytoplasmic domain-independent stimulation of protein synthesis via activation of S6 kinase contributes to FVIIa effects in pathophysiology.  相似文献   
219.
Defining signals that can support the self-renewal of multipotential hemopoietic progenitor cells (MHPCs) is pertinent to understanding leukemogenesis and may be relevant to developing stem cell-based therapies. Here we define a set of signals, JAK2 plus either c-kit or flt-3, which together can support extensive MHPC self-renewal. Phenotypically and functionally distinct populations of MHPCs were obtained, depending on which receptor tyrosine kinase, c-kit or flt-3, was activated. Self-renewal was abrogated in the absence of STAT5a/b, and in the presence of inhibitors targeting either the mitogen-activated protein kinase or phosphatidylinositol 3' kinase pathways. These findings suggest that a simple two-component signal can drive MHPC self-renewal.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号