首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   80篇
  国内免费   1篇
  1428篇
  2023年   11篇
  2022年   10篇
  2021年   27篇
  2019年   20篇
  2018年   26篇
  2017年   18篇
  2016年   19篇
  2015年   54篇
  2014年   62篇
  2013年   85篇
  2012年   91篇
  2011年   85篇
  2010年   55篇
  2009年   48篇
  2008年   76篇
  2007年   72篇
  2006年   82篇
  2005年   56篇
  2004年   51篇
  2003年   33篇
  2002年   38篇
  2001年   24篇
  2000年   29篇
  1999年   29篇
  1998年   14篇
  1997年   15篇
  1996年   14篇
  1995年   13篇
  1994年   16篇
  1993年   10篇
  1992年   25篇
  1991年   16篇
  1990年   18篇
  1989年   15篇
  1988年   11篇
  1985年   8篇
  1983年   11篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   7篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1969年   7篇
  1967年   6篇
  1966年   9篇
排序方式: 共有1428条查询结果,搜索用时 154 毫秒
71.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   
72.
Murine sclerodermatous graft-vs-host disease (Scl GVHD) models human scleroderma, with prominent skin thickening, lung fibrosis, and up-regulation of cutaneous collagen mRNA. Fibrosis in Scl GVHD may be driven by infiltrating TGF-beta1-producing mononuclear cells. Here we characterize the origin and types of those cutaneous effector cells, the cytokine and chemokine environments, and the effects of anti-TGF-beta Ab on skin fibrosis, immune cell activation markers, and collagen and cytokine synthesis. Donor cells infiltrating skin in Scl GVHD increase significantly at early time points post-transplantation and are detectable by PCR analysis of Y-chromosome sequences when female mice are transplanted with male cells. Cutaneous monocyte/macrophages and T cells are the most numerous cells in Scl GVHD compared with syngeneic controls. These immune cells up-regulate activation markers (MHC class II I-A(d) molecules and class A scavenger receptors), suggesting Ag presentation by cutaneous macrophages in early fibrosing disease. Early elevated cutaneous mRNA expression of TGF-beta1, but not TGF-beta2 or TGF-beta3, and elevated C-C chemokines macrophage chemoattractant protein-1, macrophage inflammatory protein-1alpha, and RANTES precede subsequent skin and lung fibrosis. Therefore, TGF-beta1-producing donor mononuclear cells may be critical effector cells, and C-C chemokines may play important roles in the initiation of Scl GVHD. Abs to TGF-beta prevent Scl GVHD by effectively blocking the influx of monocyte/macrophages and T cells into skin and by abrogating up-regulation of TGF-beta1, thereby preventing new collagen synthesis. The Scl GVHD model is valuable for testing new interventions in early fibrosing diseases, and chemokines may be new potential targets in scleroderma.  相似文献   
73.
74.
Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nm), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.  相似文献   
75.
As has been demonstrated for herpes simplex virus type 2, we show in this report that the herpes simplex virus type 1 ribonucleotide reductase large subunit (RR1) gene is trans activated in transient transfection assays by VP16 and ICP0 but not by ICP4. Deletion analysis demonstrated that responsiveness to induction to VP16 resides in an octamer/TAATGARAT sequence of the RR1 promoter and that the TATA box alone is sufficient to provide induction by ICP0. The induction of the RR1 gene by ICP0 but not by ICP4 suggested that it might be possible to identify the cis-acting element(s) responsive to ICP4 in an ICP4-inducible promoter. To this end, a series of chimeric promoters containing various portions of the regulatory sequences of the RR1 promoter and thymidine kinase (TK) promoter were constructed. The TK promoter is trans activated by both ICP0 and ICP4 in transient transfection assays and by ICP4 in infection. The data show that replacing the RR1 TATA region with the TK TATA region permits ICP4 inducibility even if the rest of the RR1 promoter elements remain intact. To test whether the RR1 gene is induced by ICP0 during infection, four mutant viruses were constructed. (i) TAATGARAT+ has the wild-type RR1 promoter driving chloramphenicol acetyltransferase (CAT) and the RR2 promoter driving the lacZ gene. The RR2 gene codes for the small subunit of the ribonucleotide reductase and is expressed as a beta gene. (ii) TAATGARAT- has a triple-base change in the octamer/TAATGARAT element which renders it unresponsive to VP16 trans activation, eliminating that portion of the activation of the RR1 gene. (iii) TAATGARAT- delta alpha 0 has a deletion of the alpha 0 gene. (iv) TAATGARAT- delta alpha 4 has a deletion of the alpha 4 gene. Infections were carried out in Vero cells at a multiplicity of infection of 10 per cell; cells were assayed for CAT and beta-galactosidase (beta-Gal) activities and for virus yields. The first two infections gave strong CAT and beta-Gal activities and high yields of progeny virus. Infection with the third virus showed no CAT activity but did produce high levels of beta-Gal activity and virus progeny. The fourth infection resulted in strong CAT activity but no beta-Gal activity or progeny virus. The data demonstrated that the RR1 promoter was activated in the absence of ICP4 but not in the absence of ICP0 in these infections.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
76.
Cowpea miscellany group of rhizobia are generally broad host range. Transconjugants of these cowpea rhizobial isolates having nodABC-lacZ fusion were monitored for flavonoid/root exudate-induced activation of the nod genes in terms of β-galactosidase activity, thus determining the potential host range of the rhizobial isolates. Received: 17 November 1997 / Accepted: 23 December 1997  相似文献   
77.
Understanding protein-protein interactions that occur between ACP and KS domains of polyketide synthases and fatty acid synthases is critical to improving the scope and efficiency of combinatorial biosynthesis efforts aimed at producing non-natural polyketides. Here, we report a facile strategy for rapidly reporting such ACP-KS interactions based on the incorporation of an amino acid with photocrosslinking functionality. Crucially, this photocrosslinking strategy can be applied to any polyketide or fatty acid synthase regardless of substrate specificity, and can be adapted to a high-throughput format for directed evolution studies.  相似文献   
78.
    
Protein concentration determination is a necessary in-process control for the downstream operations within biomanufacturing. As production transitions from batch mode to an integrated continuous bioprocess paradigm, there is a growing need to move protein concentration quantitation from off-line to in-line analysis. One solution to fulfill this process analytical technology need is an in-line index of refraction (IoR) sensor to measure protein concentration in real time. Here the performance of an IoR sensor is evaluated through a series of experiments to assess linear response, buffer matrix effects, dynamic range, sensor-to-sensor variability, and the limits of detection and quantitation. The performance of the sensor was also tested in two bioprocessing scenarios, ultrafiltration and capture chromatography. The implementation of this in-line IoR sensor for real-time protein concentration analysis and monitoring has the potential to improve continuous bioprocess manufacturing.  相似文献   
79.
Epidemiological and laboratory studies have highlighted the potent chemopreventive effectiveness of both dietary selenium and cruciferous vegetables, particularly broccoli. Sulforaphane (SFN), an isothiocyanate, was identified as the major metabolite of broccoli responsible for its anti-cancer properties. An important mechanism for SFN chemoprevention is through the enhancement of glutathione (GSH), the most abundant antioxidant in animals and an important target in chemoprevention. Enhancement of GSH biosynthetic enzymes including the rate-limiting glutamate cysteine ligase (GCL), as well as other Phase II detoxification enzymes results from SFN-mediated induction of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway. While isothiocyanate compounds such as SFN are among the most potent Nrf2 inducers known, we hypothesized that substitution of sulfur with selenium in the isothiocyanate functional group of SFN would result in an isoselenocyanate compound (SFN-isoSe) with enhanced Nrf2 induction capability. Here we report that SFN-isoSe activated an ARE-luciferase reporter in HepG2 cells more potently than SFN. It was also found that SFN-isoSe induced GCL and GSH in MEF cells in an Nrf2-dependent manner. Finally, we provide evidence that SFN-isoSe was more effective in killing HepG2 cancer cells, yet was less toxic to non-cancer MEF cells, than SFN.These data support our hypothesis, and suggest that SFN-isoSe and potentially other isoselenocyanates may be highly effective chemoprotective agents in vivo due to their ability to induce Nrf2 with low toxicity in normal cells and high efficiency at killing cancer cells.  相似文献   
80.
Newcastle disease (ND) is highly contagious, economically important viral disease affecting most of avian species worldwide. Newcastle disease virus (NDV) has single stranded negative sense RNA genome which encodes for six structural and two non-structural proteins. Envelope glycoproteins i.e. hemagglutinin-neuraminidase (HN) and the fusion (F), elicit protective immune response. In this study, HN and F genes of velogenic (virulent) strain were amplified and cloned at multiple cloning sites A and B, respectively into pIRES bicistronic vector for use as bivalent DNA vaccine against ND. The recombinant plasmid was characterized for its orientation by restriction enzyme digestion and PCR. Expression of HN and F genes was assessed in transfected Vero cells at RNA level using RT-PCR in total RNA as well as protein level using IFAT, IPT and western blot using NDV specific antiserum. All these experiments confirmed that HN and F genes cloned in recombinant pIRES.nd.hn.f are functionally active. The recombinant construct is being evaluated as DNA vaccine against ND.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号