首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
  74篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   10篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
41.
Nineteen species of Passiflora (Passifloraceae) were examined for the presence of cyanogenic glycosides. Passibiflorin, a bisglycoside containing the 6-deoxy-beta-D-gulopyranosyl residue, was isolated from P. apetala, P. biflora, P. cuneata, P. indecora, P. murucuja and P. perfoliata. In some cases this glycoside co-occurs with simple beta-D-glucopyranosides: tetraphyllin A, deidaclin, tetraphyllin B, volkenin, epivolkenin and taraktophyllin. P. citrina contains passicapsin, a rare glycoside with the 2,6-dideoxy-beta-D-xylo-hexopyranosyl moiety, while P. herbertiana contains tetraphyllin A, deidaclin, epivolkenin and taraktophyllin, P. discophora tetraphyllin B and volkenin, and P. x violacea tetraphyllin B sulfate. The remaining species were noncyanogenic. The glycosides were identified by 1H and 13C NMR spectroscopy following isolation by reversed-phase preparative HPLC. From P. guatemalensis, a new glucoside named passiguatemalin was isolated and identified as a 1-(beta-D-glucopyranosyloxy)-2,3-dihydroxycyclopentane-1-carbonitrile. An isomeric glycoside was prepared by catalytic hydrogenation of gynocardin. alpha-Hydroxyamides corresponding to the cyanogenic glycosides were isolated from several Passiflora species. These alpha-hydroxyamides, presumably formed during processing of the plant material, behave as cyanogenic compounds when treated with commercial Helix pomatia crude enzyme preparation. Thus, the enzyme preparation appears to contain an amide dehydratase, which converts alpha-hydroxyamides to cyanohydrins that liberate cyanide; this finding is of interest in connection with analysis of plant tissues and extracts using Helix pomatia enzymes.  相似文献   
42.
Recently we showed that the three-dimensional structure of proteins can be investigated from a network perspective, where the amino acid residues represent the nodes in the network and the noncovalent interactions between them are considered for the edge formation. In this study, the dynamical behavior of such networks is examined by considering the example of T4 lysozyme. The equilibrium dynamics and the process of unfolding are followed by simulating the protein at 300 K and at higher temperatures (400 K and 500 K), respectively. The snapshots of the protein structure from the simulations are represented as protein structure networks in which the strength of the noncovalent interactions is considered an important criterion in the construction of edges. The profiles of the network parameters, such as the degree distribution and the size of the largest cluster (giant component), were examined as a function of interaction strength at different temperatures. Similar profiles are seen at all the temperatures. However, the critical strength of interaction (Icritical) and the size of the largest cluster at all interaction strengths shift to lower values at 500 K. Further, the folding/unfolding transition is correlated with contacts evaluated at Icritical and with the composition of the top large clusters obtained at interaction strengths greater than Icritical. Finally, the results are compared with experiments, and predictions are made about the residues, which are important for stability and folding. To summarize, the network analysis presented in this work provides insights into the details of the changes occurring in the protein tertiary structure at the level of amino acid side-chain interactions, in both the equilibrium and the unfolding simulations. The method can also be employed as a valuable tool in the analysis of molecular dynamics simulation data, since it captures the details at a global level, which may elude conventional pairwise interaction analysis.  相似文献   
43.
P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce.  相似文献   
44.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   
45.
NEMO is an essential regulatory component of the IκB kinase (IKK) complex, which controls activation of the NF-κB signaling pathway. Herein, we show that NEMO exists as a disulfide-bonded dimer when isolated from several cell types and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Treatment of cells with hydrogen peroxide (H2O2) induces further formation of NEMO dimers. Disulfide bond-mediated formation of NEMO dimers requires Cys54 and Cys347. The ability of these residues to form disulfide bonds is consistent with their location in a NEMO dimer structure that we generated by molecular modeling. We also show that pretreatment with H2O2 decreases TNFα-induced IKK activity in NEMO-reconstituted cells, and that TNFα has a diminished ability to activate NF-κB DNA binding in cells reconstituted with NEMO mutant C54/347A. This study implicates NEMO as a target of redox regulation and presents the first structural model for the NEMO protein.  相似文献   
46.
The production of secondary metabolites by aposymbiotic lichen-forming fungi in culture is thought to be influenced by environmental conditions. The effects of the environment may be studied by culturing fungi under defined growing parameters to provide a better understanding of the role of the large number of polyketide synthase (PKS) gene paralogs detected in the genomes of many fungi. The objectives of this study were to examine the effects of culture conditions (media composition and pH level) on the colony growth, the numbers of secondary products, and the expression of two PKS genes by the lichen-forming fungus Ramalina dilacerata. Four types of growth media at four different pH levels were prepared to culture spore isolates of R. dilacerata. Colony diameter and texture were recorded. The number of secondary compounds were determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Expression of two PKS genes (non-reducing (NR) and 6-MSAS-type PKS) were compared with expression of an internal control mitochondrial small subunit gene (mtSSU). The results showed that media containing yeast extracts produced the largest colony diameters and the fewest number of secondary metabolites. Colony growth rates also varied with different media conditions, and a significant negative relationship occurred between colony diameter and number of secondary metabolites. Expression of the NR PKS gene was significantly higher at pH 6.5 on the glucose malt agar than any other media, and expression of the 6-MSAS-type (partially-reducing) PKS gene was significantly higher at pH 8.5 on (malt agar) malt agar than on the other types of agar. Gene expression was correlated with the pH level and media conditions that induced the production of the larger number of secondary substances. This is the first study to examine secondary metabolite production in R. dilacerata by comparing the number of polyketides detected with quantitative polymerase chain reaction (qPCR) of two PKS genes under different culture conditions.  相似文献   
47.

Background  

Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs.  相似文献   
48.
The ability to reconstitute a normal immune system with antiretroviral therapy in the setting of HIV infection remains uncertain. This study aimed to characterize quantitative and qualitative aspects of various T cell subpopulations that do not improve despite effective ART. CD4∶CD8 ratio was evaluated in HIV-infected subjects with viral loads >10,000 copies/µl (“non-controllers”, n = 42), those with undetectable viral loads on ART (“ART-suppressed”, n = 53), and HIV-uninfected subjects (n = 22). In addition, T cell phenotype and function were examined in 25 non-controllers, 18 ART-suppressed, and 7 HIV-uninfected subjects. CD4∶CD8 ratio in non-controllers, ART-suppressed, and HIV-uninfected subjects was 0.25, 0.48, and 1.95 respectively (P<0.0001 for all comparisons). The increased ratio in ART-suppressed compared to non-controllers was driven by an increase of CD4+ T cells, with no change in the expanded CD8+ T cell population. Expansion of differentiated (CD28−CD27−CD45RA+/−CCR7−) T cell subpopulations persisted despite ART and minimal changes were noted in naïve T cell frequencies over time. Increased number of CD8+CD28− T cells and increased CD8+ CMV-specific T cell responses were associated with a decreased CD4∶CD8 ratio. Measures of T cell function demonstrated persistence of high frequencies of CD8+ T cells producing IFN–γ. Lastly, though all CD8+ subpopulations demonstrated significantly lower Ki67 expression in ART-suppressed subjects, CD4+ T cell subpopulations did not consistently show this decrease, thus demonstrating different proliferative responses in the setting of T cell depletion. In summary, this study demonstrated that CD4∶CD8 ratios remained significantly decreased and naïve T cell numbers were slow to increase despite long-term viral suppression on ART. In addition, there is a evidence of differential regulation of the CD4+ and CD8+ T cell subpopulations, suggesting independent homeostatic regulation of the two compartments.  相似文献   
49.
Metabolic activation and DNA adduct formation of the carcinogenic aromatic hydrocarbon dibenzo[a,l]pyrene (DBP) was investigated in human mammary carcinoma MCF-7 cells and human cytochrome P450 (CYP) 1B1-expressing Chinese hamster V79 cells in culture. It has been shown that DBP is metabolically activated to DNA-binding diol epoxides both in vitro and in vivo. To further establish the role of human CYP1B1 in the activation of DBP, both cell lines were cotreated with DBP and a selective chemical inhibitor of CYP1B1, 2,4,3' ,5'-tetramethoxy-stilbene (TMS). Results from DBP-DNA adduct analyses revealed the complete inhibition of DNA binding when cells were cotreated with DBP and TMS in comparison to DBP alone. Inactivation of CYP1B1 by TMS was also demonstrated through a decrease in the 7-ethoxyresorufin O-deethylase (EROD) activity in microsomes isolated from these cells. Emodin, 3-methyl-1,6,8-trihydroxyanthraquinone, an active ingredient of an herb, has been recently shown of being able to induce CYP1 gene expression. Examination of human CYP1B1 induction and EROD activity confirmed an increase in protein levels upon cotreatment with emodin and DBP. Despite increases in protein levels and enzyme activity, there was no significant change in DBP-DNA binding levels at very low substrate concentrations (17 nM). The data obtained in this study emphasize the central role of CYP1B1 in the activation of DBP in human cells in culture.  相似文献   
50.
Background and Aims Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness.Methods Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot–sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot–sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed.Key Results The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation.Conclusions The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号