首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   11篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
21.
22.
Autophagy and senescence are 2 distinct pathways that are importantly involved in acute kidney injury and renal repair. Recent data indicate that the 2 processes might be interrelated. To investigate the potential link between autophagy and senescence in the kidney we isolated primary tubular epithelial cells (PTEC) from wild-type mice and monitored the occurrence of cellular senescence during autophagy activation and inhibition. We found that the process of cell isolation and transfer into culture was associated with a strong basal autophagic activation in PTEC. Specific inhibition of autophagy by silencing autophagy-related 5 (Atg5) counteracted the occurrence of senescence hallmarks under baseline conditions. Reduced senescent features were also observed in Atg5 silenced PTEC after γ-irradiation and during H-Ras induced oncogenic senescence, but the response was less uniform in these stress models. Senescence inhibition was paralleled by better preservation of a mature epithelial phenotype in PTEC. Interestingly, treatment with rapamycin, which acts as an activator of autophagy, also counteracted the occurrence of senescence features in PTEC. While we interpret the anti-senescent effect of rapamycin as an autophagy-independent effect of mTOR-inhibition, the more specific approach of Atg5 silencing indicates that overactivated autophagy can have pro-senescent effects in PTEC. These results highlight the complex interaction between cell culture dependent stress mechanisms, autophagy and senescence.  相似文献   
23.
Amino acid sequence of Escherichia coli citrate synthase   总被引:6,自引:0,他引:6  
V Bhayana  H W Duckworth 《Biochemistry》1984,23(13):2900-2905
Detailed evidence for the amino acid sequence of allosteric citrate synthase from Escherichia coli is presented. The evidence confirms all but 11 of the residues inferred from the sequence of the gene as reported previously [Ner, S. S., Bhayana, V., Bell, A. W., Giles, I. G., Duckworth, H. W., & Bloxham, D. P. (1983) Biochemistry 22, 5243]; no information has been obtained about 10 of these (residues 101-108 and 217-218), and we find aspartic acid rather than asparagine at position 10. Substantial regions of sequence homology are noted between the E. coli enzyme and citrate synthase from pig heart, especially near residues thought to be involved in the active site. Deletions or insertions must be assumed in a number of places in order to maximize homology. Either of two lysines, at positions 355 and 356, could be formally homologous to the trimethyllysine of pig heart enzyme, but neither of these is methylated. It appears that E. coli and pig heart citrate synthases are formed of basically similar subunits but that considerable differences exist, which must explain why the E. coli enzyme is hexameric and allosterically inhibited by NADH, while the pig heart enzyme is dimeric and insensitive to that nucleotide.  相似文献   
24.
Platelet (PLT) storage is currently limited to 5 days in clinics in the United States, in part, due to an increasing risk for microbial contamination over time. In light of well‐documented antimicrobial activity of blue light (405‐470 nm), we investigated potentials to decontaminate microbes during PLT storage by antimicrobial blue light (aBL). We found that PLTs produced no detectable levels of porphyrins or their derivatives, the chromophores that specifically absorb blue light, in marked contrast to microbes that generated porphyrins abundantly. The difference formed a basis with which aBL selectively inactivated contaminated microbes prior to and during the storage, without incurring any harm to PLTs. In accordance with this, when contamination with representative microbes was simulated in PLT concentrates supplemented with 65% of PLT additive solution in a standard storage bag, all “contaminated” microbes tested were completely inactivated after exposure of the bag to 405 nm aBL at 75 J/cm2 only once. While killing microbes efficiently, this dose of aBL irradiation exerted no adverse effects on the viability, activation or aggregation of PLTs ex vivo and could be used repeatedly during PLT storage. PLT survival in vivo was also unaltered by aBL irradiation after infusion of aBL‐irradiated mouse PLTs into mice. The study provides proof‐of‐concept evidence for a potential of aBL to decontaminate PLTs during storage.   相似文献   
25.
Inhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPmu, contain a wedge-shaped helix-loop-helix located near the first catalytic domain. Helix-loop-helix domains in other proteins demonstrate homophilic binding and inhibit function; therefore, we tested the hypothesis that LAR wedge domain peptides would exhibit homophilic binding, bind to LAR, and inhibit LAR function. Fluorescent beads coated with LAR or PTPmu wedge peptides demonstrated PTP-specific homophilic binding, and LAR wedge peptide-coated beads precipitated LAR protein. Administration of LAR wedge Tat peptide to PC12 cells resulted in increased proliferation, decreased cell death, increased neurite outgrowth, and augmented Trk PTK-mediated responses to nerve growth factor (NGF), a phenotype matching that found in PC12 cells with reduced LAR levels. PTPmu wedge Tat peptide had no effect on PC12 cells but blocked the PTPmu-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPmu substrate, whereas LAR wedge peptide had no effect. The survival- and neurite-promoting effect of the LAR wedge peptide was blocked by the Trk inhibitor K252a, and reciprocal co-immunoprecipitation demonstrated LAR/TrkA association. The addition of LAR wedge peptide inhibited LAR co-immunoprecipitation with TrkA, augmented NGF-induced activation of TrkA, ERK, and AKT, and in the absence of exogenous NGF, induced activation of TrkA, ERK, and AKT. PTP wedge domain peptides provide a unique PTP inhibition strategy and offer a novel approach for augmenting PTK function.  相似文献   
26.
Cellular responsiveness to nitric oxide (NO) is shaped by past history of NO exposure. The mechanisms behind this plasticity were explored using rat platelets in vitro, specifically to determine the relative contributions made by desensitization of NO receptors, which couple to cGMP formation, and by phosphodiesterase-5 (PDE5), which is activated by cGMP and also hydrolyzes it. Repeated delivery of brief NO pulses (50 nm peak) at 1-min intervals resulted in a progressive loss of the associated cGMP responses, which was the combined consequence of receptor desensitization and PDE5 activation, with the former dominating. Delivery of pulses of differing amplitude showed that NO stimulated and desensitized receptors with similar potency (EC50 = 10–20 nm). PDE5 activation was highly sensitive to NO, with a single pulse peaking at 2 nm being sufficient to evoke a 50% loss of response to a subsequent near-maximal NO pulse. However, the activated state of the PDE subsided quickly after removal of NO, the half-time for recovery being 25 s. In contrast, receptor desensitization reverted much more slowly, the half-time being 16 min. Accordingly, with long (20-min) exposures, NO concentrations as low as 600 pm provoked significant desensitization. The results indicate that PDE5 activation and receptor desensitization subserve distinct short term and longer term roles as mediators of plasticity in NO-cGMP signaling. A kinetic model explicitly describing the complex interplay between NO concentration, cGMP synthesis, PDE5 activation, and the resulting cGMP accumulation successfully simulated the present and previous data.Nitric oxide (NO) is an intercellular messenger molecule in most tissues of the body and exerts physiological effects by binding to receptors possessing intrinsic guanylyl cyclase (GC)4 activity. The receptor proteins are known by various names, including the homogenate-based one, soluble guanylyl cyclase, but here we simply call them NO receptors because this terminology is conceptually more informative in a cellular context. Synthesis of cGMP from GTP that follows receptor activation can engage a number of downstream targets, including cGMP-dependent protein kinase, to bring about alterations in cell function, such as smooth muscle relaxation and neural transmission (13).In common with other hormone or transmitter signaling pathways, the sensitivity of the NO-cGMP pathway is subject to short term and long term regulation. Enduring exposure of cells to NO (hours or more) leads to a loss of NO responsiveness that in the cardiovascular system contributes to the clinical problem of tolerance to nitrovasodilator therapy (46). One mechanism here is a gradual loss of the NO receptor mRNA and protein (7, 8). Conversely, a chronic lack of NO leads to supersensitivity that has been attributed to increased NO receptor activity (9, 10).Short term regulatory mechanisms serve to shape acute cellular cGMP responses to NO and may involve NO receptor desensitization, reducing the rate of cGMP formation (11), activation of phosphodiesterases (PDEs) that consume cGMP (12), or combinations of the two (13, 14). These short term mechanisms may also be quite sustained. For example, relatively brief (5 min) exposures of cells to NO can reduce responsiveness to NO an hour later, a phenomenon that correlated with increased activity of PDE5 (15). This PDE isoform, which is inhibited by drugs like sildenafil (Viagra) used to treat erectile dysfunction, contains a non-catalytic cGMP binding site whose occupation stimulates catalytic activity (16, 17). Reciprocally, shortly after removing the endothelial source of NO, blood vessels develop a supersensitivity to NO-induced relaxation, an effect that was speculated to reflect increased NO receptor responsiveness (18).Addressing directly the relative contributions of NO receptors and PDEs to the regulation of NO-cGMP signaling is problematic in complex tissues because it is very difficult to measure their activities accurately. Rat platelets maintained in vitro, on the other hand, have merit as an experimental model for these purposes because they are physiological NO targets, homogenous, and are also extremely small (about 1 μm in diameter), minimizing problems of compartmentation of the signaling proteins and of diffusion delays in access of applied agents to the cell interior. In addition, they exist naturally in suspension, which is ideal for kinetic studies, they have an abundance of NO receptors of just one type (α1β1), and the only detectable PDE that hydrolyzes NO-evoked cGMP signals is PDE5 (13). Exposure of these cells to persistent NO generates only very transient cGMP responses, mostly terminating within 10 s of NO application; this profile has been explained by a combination of receptor desensitization and PDE5 enhancement (13). The questions addressed here are whether or not these adaptations persist beyond the period of NO application to influence subsequent cellular responsiveness and, if so, for how long, and what are their relative contributions to the plasticity? Central to the feasibility of obtaining answers was our recent development of a method for delivering repeated NO pulses of known amplitude and duration (14), allowing controlled conditioning NO exposures to be followed by test exposures after selected time intervals in NO-free solution.  相似文献   
27.
A new class of copper(II) nanohybrid solids, LCu(CH3COO)2 and LCuCl2, have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5–10 and 60–70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV–vis spectroscopy and inhibition kinetics using Lineweaver–Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC50 values (0.025–0.032 μg/ml) are similar to the IC50 value of the standard drug chloroquine used in the bioassay. Lineweaver–Burk plots for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH3COO)2 and LCuCl2 were found to be 10 and 13 μM, respectively. The IC50 values for inhibition of plasmepsin II by LCu(CH3COO)2 and LCuCl2 were found to be 14 and 17 μM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, β-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of antimalarial activity of these compounds via plasmepsin II inhibition in the P. falciparum malaria parasite is demonstrated.  相似文献   
28.
The aim of this study was to develop a rapid and sensitive HPLC method with UV detection for the estimation of imatinib from the plasma of patients with chronic myeloid leukemia (CML). The robustness of the method was checked by conducting first dose pharmacokinetics on blood samples from four patients who had been administered Gleevec (100 mg) in an oral dose. Samples were prepared in a simple and single step by precipitating the plasma proteins with methanol and injecting 50 microl aliquot from supernatant was subjected for analysis. Assay was conducted using a C8 column (250 mm x 4.6 mm, 5 microm particle size) under isocratic elution with 0.02 M potassium dihydrogen phosphate-acetonitrile (7:3, v/v) at a flow rate of 1 ml/min and detected using photodiode array at 265 nm. Calibration plots in spiked plasma were linear in a concentration range of 0.05-25 microg/ml. The inter and intra-day variation of standard curve was <4% (R.S.D.). This method could be a simple and quick method for the estimation of imatinib from the patient's plasma.  相似文献   
29.
Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8(+) T-cells activated in vivo through bacterial infection and then purified from a single mouse.  相似文献   
30.
A series of pyranosyl homo-C-nucleosides have been synthesized by reaction of butenonyl C-glycosides (5a5j, and 8) and cyanoacetamide in presence of t-BuOK followed by further modifications. The reaction proceeds by Michael addition of cyanoacetamide to the butenonyl C-glycosides and subsequent dehydrative cyclization and oxidative aromatization to give glycosylmethyl pyridones (6a6j, 7a7j, 9, and 10). The glycosylmethyl pyridones (6a6e) on reaction with POCl3 under reflux gave respective glycosylmethyl pyridines (11a11e and 12a12e) in good yields. The synthesized compounds were screened for their in vitro α-glucosidase, glucose-6-phosphatase and glycogen phosphorylase inhibitory activities. One of the pyridylmethyl homo-C-nucleoside, compound 11d, displayed 52% inhibition of glucose-6-phosphatase as compared to the standard drug sodium orthovanadate while compound 12a showed a significant antihyperglycemic effect of 17.1% in the diabetic rats as compared to the standard drug metformin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号