首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95270篇
  免费   377篇
  国内免费   816篇
  96463篇
  2023年   22篇
  2022年   37篇
  2021年   73篇
  2020年   48篇
  2019年   56篇
  2018年   11900篇
  2017年   10704篇
  2016年   7504篇
  2015年   686篇
  2014年   407篇
  2013年   467篇
  2012年   4360篇
  2011年   12946篇
  2010年   12076篇
  2009年   8305篇
  2008年   9862篇
  2007年   11436篇
  2006年   337篇
  2005年   567篇
  2004年   1020篇
  2003年   1068篇
  2002年   832篇
  2001年   302篇
  2000年   201篇
  1999年   59篇
  1998年   19篇
  1997年   28篇
  1996年   25篇
  1994年   18篇
  1993年   35篇
  1992年   41篇
  1991年   59篇
  1990年   23篇
  1989年   34篇
  1988年   41篇
  1987年   36篇
  1986年   17篇
  1985年   18篇
  1984年   28篇
  1983年   25篇
  1982年   17篇
  1979年   19篇
  1978年   12篇
  1977年   13篇
  1975年   12篇
  1972年   251篇
  1971年   277篇
  1965年   13篇
  1962年   27篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1–interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.  相似文献   
993.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   
994.
Abstract

Azo dyes are recalcitrant compounds used as a colorant in various industries. The pollution caused by their extensive usage has adversely affected the environment for years. The existing physicochemical methods for dye pollution remediation are rather inefficient and hence there is a dearth of low-cost, potential systems capable of dye degradation. The current research studies the biodegradation potential of immobilized bacterial cells against azo dyes Reactive Orange 16 (RO-16) and Reactive Blue 250 (RB-250). Two indigenous dye degrading bacteria Bacillus sp. VITAKB20 and Lysinibacillus sp. KPB6 was isolated from textile sludge sample. Free cells of Bacillus. sp. VITAKB20 degraded 92.38% of RO-16 and that of Lysinibacillus sp. KPB6 degraded 95.36% of RB-250 within 72?h under static conditions. Upon immobilization with calcium alginate, dye degradation occurred rapidly. Bacillus. sp. VITAKB20 degraded 97.5% of RO-16 and Lysinibacillus sp. KPB6 degraded 98.2% of RB-250 within 48?h under shaking conditions. Further, the nature of dye decolorization was biodegradation as evident by high-performance liquid chromatography (HPLC), and Fourier-transform infrared spectroscopy (FTIR) results. Phytotoxicity and biotoxicity assays revealed that the degraded dye products were less toxic in nature than the pure dyes. Thus, immobilization proved to be a highly likely alternative treatment for dye removal.  相似文献   
995.
996.
In the present study the potentials of aqueous extracts of the two plants, neem (Azadirachta indica) and Tulsi (Ocimum sanctum) were examined in alleviating arsenic toxicity in rice (Oryza sativa L.) plants grown in hydroponics. Seedlings of rice grown for 8 days in nutrient solution containing 50 μM sodium arsenite showed decline in growth, reduced biomass, altered membrane permeability and increased production of superoxide anion (O2·−), H2O2 and hydroxyl radicals (·OH). Increased lipid peroxidation marked by elevated TBARS (thiobarbituric acid reactive substances) level, increased protein carbonylation, alterated levels of ascorbate, glutathione and increased activities of enzymes SOD (superoxide dismutase), CAT (catalase), APX (ascorbate peroxidase) and GPX (glutathione peroxidase) were noted in the seedlings on As treatment. Exogenously added leaf aqueous extracts of Azadirachta indica (0.75 mg mL−1, w/v) and Ocimum sanctum (0.87 mg mL−1, w/v) in the growth medium considerably alleviated As toxicity effects in the seedlings, marked by reduced As uptake, restoration of membrane integrity, reduced production of ROS, lowering oxidative damage and restoring the levels of ascorbate, glutathione and activity levels of antioxidative enzymes. Arsenic uptake in the seedlings declined by 72.5% in roots and 72.8% in shoots, when A. indica extract was present in the As treatment medium whereas with O. sanctum extract, the uptake declined by 67.2% in roots and 70.01% in shoots. Results suggest that both A. indica and O. sanctum aqueous extracts have potentials to alleviate arsenic toxicity in rice plants and that A. indica can serve as better As toxicity alleviator compared to O. sanctum.  相似文献   
997.
Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large‐scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human‐induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human‐induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy–water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy–water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.  相似文献   
998.
999.
Valeriana jatamansi Jones, an important medicinal herb of the Himalayan region, is an essential source of many therapeutic compounds and is traded/consumed in very high volume. The hypothesis of this study was that different seasons and light conditions may affect the content of medicinally valuable components with changes in the morpho-physiological attributes of the plant. Growing plants under suitable light conditions and harvesting of appropriate plant parts in optimum season is crucial for harnessing the full potential of the crop. Thus, the study was carried out to determine the seasonal response of V. jatamansi plants (genetically identical plants of same age) in terms of growth and phytochemical content under two different light conditions (full sunlight and 50% shade). During all seasons, growth parameters (plant height, leaf number, leaf area, relative water content, plant biomass) and the principle bioactive compounds (valerenic acid) were higher under shade conditions, while total flavonoids, tannins, phenolic compounds and antioxidant activities were higher under full sunlight conditions. HPLC analysis revealed that valerenic acid and most of the phenolic content were higher during summer season, especially in leaf part of the plant. The study suggested harvesting of V. jatamansi plants (especially leaf), during summer season to harness high quality raw material and to prevent loss of belowground parts. This strategy can be adopted by farmers for large scale cultivation of species.Supplementary InformationThe online version of this article contains supplementary material available at 10.1007/s12298-021-00944-0  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号