全文获取类型
收费全文 | 3030篇 |
免费 | 248篇 |
国内免费 | 2篇 |
专业分类
3280篇 |
出版年
2023年 | 9篇 |
2022年 | 11篇 |
2021年 | 19篇 |
2020年 | 14篇 |
2019年 | 36篇 |
2018年 | 46篇 |
2017年 | 30篇 |
2016年 | 49篇 |
2015年 | 90篇 |
2014年 | 94篇 |
2013年 | 145篇 |
2012年 | 210篇 |
2011年 | 182篇 |
2010年 | 142篇 |
2009年 | 130篇 |
2008年 | 164篇 |
2007年 | 192篇 |
2006年 | 200篇 |
2005年 | 196篇 |
2004年 | 186篇 |
2003年 | 176篇 |
2002年 | 152篇 |
2001年 | 48篇 |
2000年 | 25篇 |
1999年 | 32篇 |
1998年 | 51篇 |
1997年 | 33篇 |
1996年 | 34篇 |
1995年 | 47篇 |
1994年 | 33篇 |
1993年 | 42篇 |
1992年 | 40篇 |
1991年 | 22篇 |
1990年 | 27篇 |
1989年 | 34篇 |
1988年 | 20篇 |
1987年 | 13篇 |
1986年 | 17篇 |
1985年 | 21篇 |
1984年 | 26篇 |
1983年 | 25篇 |
1982年 | 26篇 |
1981年 | 19篇 |
1980年 | 23篇 |
1979年 | 11篇 |
1978年 | 25篇 |
1977年 | 16篇 |
1976年 | 13篇 |
1974年 | 13篇 |
1973年 | 7篇 |
排序方式: 共有3280条查询结果,搜索用时 15 毫秒
91.
Vertebrate remains and nummulites have been investigated from the Late Eocene—Early Oligocene transgressive sequence of the «Chaînes subalpines south of the lake Annecy. The sedimentary environments range from fluvio-lacustrine shales and conglomerates at the base to hemipelagic Globigerina shales at the top. The fluvio-lacustrine white marls contain mammals of the upper, probably terminal Ludian, with affinities to the assemblage of Saint-Capraise. The brackish Cerithium beds have furnished charophytes of the Bembridge zone. The nummulite limestones are not dated precisely, but isolated, probably redeposited nummulites from the base of the Globigerina shales are of terminal Eocene or basal Oligocene age. The Globigerina shales themselves belong to the Oligocene. 相似文献
92.
Barbara Drigo George A. Kowalchuk Brigitte A. Knapp Agata S. Pijl Henricus T. S. Boschker Johannes A. van Veen 《Global Change Biology》2013,19(2):621-636
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. 相似文献
93.
Erwan Quéméré Fabrice Hibert Christian Miquel Emeline Lhuillier Emmanuel Rasolondraibe Julie Champeau Clément Rabarivola Louis Nusbaumer Cyrille Chatelain Laurent Gautier Patrick Ranirison Brigitte Crouau-Roy Pierre Taberlet Lounès Chikhi 《PloS one》2013,8(3)
In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species. 相似文献
94.
Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. 相似文献
95.
Qu X Khutoryanskiy VV Stewart A Rahman S Papahadjopoulos-Sternberg B Dufes C McCarthy D Wilson CG Lyons R Carter KC Schätzlein A Uchegbu IF 《Biomacromolecules》2006,7(12):3452-3459
Amphiphilic chitosan-based polymers (Mw < 20 kDa) self-assemble in aqueous media at low micromolar concentrations to give previously unknown micellar clusters of 100-300 nm in size. Micellar clusters comprise smaller 10-30 nm aggregates, and the nanopolarity/drug incorporation efficiency of their hydrophobic domains can be tailored by varying the degree of lipidic derivatization and molecular weight of the carbohydrate. The extent of drug incorporation by these novel micellar clusters is 1 order of magnitude higher than is seen with triblock copolymers, with molar polymer/drug ratios of 1:48 to 1:67. On intravenous injection, the pharmacodynamic activity of a carbohydrate propofol formulation is increased by 1 order of magnitude when compared to a commercial emulsion formulation, and on topical ocular application of a carbohydrate prednisolone formulation, initial drug aqueous humor levels are similar to those found with a 10-fold dose of prednisolone suspension. 相似文献
96.
97.
S��bastien Thomas Brigitte Ritter David Verbich Claire Sanson Lyne Bourbonni��re R. Anne McKinney Peter S. McPherson 《The Journal of biological chemistry》2009,284(18):12410-12419
Intersectin-short (intersectin-s) is a multimodule scaffolding protein
functioning in constitutive and regulated forms of endocytosis in non-neuronal
cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of
Drosophila and Caenorhabditis elegans. In vertebrates,
alternative splicing generates a second isoform, intersectin-long
(intersectin-l), that contains additional modular domains providing a guanine
nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is
expressed in multiple tissues and cells, including glia, but excluded from
neurons, whereas intersectin-l is a neuron-specific isoform. Thus,
intersectin-I may regulate multiple forms of endocytosis in mammalian neurons,
including SV endocytosis. We now report, however, that intersectin-l is
localized to somatodendritic regions of cultured hippocampal neurons, with
some juxtanuclear accumulation, but is excluded from synaptophysin-labeled
axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV
recycling. Instead intersectin-l co-localizes with clathrin heavy chain and
adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces
the rate of transferrin endocytosis. The protein also co-localizes with
F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation
during development. Our data indicate that intersectin-l is indeed an
important regulator of constitutive endocytosis and neuronal development but
that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis
(CME)4 is a
major mechanism by which cells take up nutrients, control the surface levels
of multiple proteins, including ion channels and transporters, and regulate
the coupling of signaling receptors to downstream signaling cascades
(1-5).
In neurons, CME takes on additional specialized roles; it is an important
process regulating synaptic vesicle (SV) availability through endocytosis and
recycling of SV membranes (6,
7), it shapes synaptic
plasticity
(8-10),
and it is crucial in maintaining synaptic membranes and membrane structure
(11).Numerous endocytic accessory proteins participate in CME, interacting with
each other and with core components of the endocytic machinery such as
clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific
modules and peptide motifs
(12). One such module is the
Eps15 homology domain that binds to proteins bearing NPF motifs
(13,
14). Another is the Src
homology 3 (SH3) domain, which binds to proline-rich domains in protein
partners (15). Intersectin is
a multimodule scaffolding protein that interacts with a wide range of
proteins, including several involved in CME
(16). Intersectin has two
N-terminal Eps15 homology domains that are responsible for binding to epsin,
SCAMP1, and numb
(17-19),
a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25
(17,
20,
21), and five SH3 domains in
its C-terminal region that interact with multiple proline-rich domain
proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS
(16,
22-25).
The rich binding capability of intersectin has linked it to various functions
from CME (17,
26,
27) and signaling
(22,
28,
29) to mitogenesis
(30,
31) and regulation of the
actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of
Drosophila and C. elegans where it acts as a scaffold,
regulating the synaptic levels of endocytic accessory proteins
(21,
32-34).
In vertebrates, the intersectin gene is subject to alternative splicing, and a
longer isoform (intersectin-l) is generated that is expressed exclusively in
neurons (26,
28,
35,
36). This isoform has all the
binding modules of its short (intersectin-s) counterpart but also has
additional domains: a DH and a PH domain that provide guanine nucleotide
exchange factor (GEF) activity specific for Cdc42
(23,
37) and a C2 domain at the C
terminus. Through its GEF activity and binding to actin regulatory proteins,
including N-WASP, intersectin-l has been implicated in actin regulation and
the development of dendritic spines
(19,
23,
24). In addition, because the
rest of the binding modules are shared between intersectin-s and -l, it is
generally thought that the two intersectin isoforms have the same endocytic
functions. In particular, given the well defined role for the invertebrate
orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l
performs this role in mammalian neurons, which lack intersectin-s. Defining
the complement of intersectin functional activities in mammalian neurons is
particularly relevant given that the protein is involved in the
pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is
localized on chromosome 21q22.2 and is overexpressed in DS brains
(38). Interestingly,
alterations in endosomal pathways are a hallmark of DS neurons and neurons
from the partial trisomy 16 mouse, Ts65Dn, a model for DS
(39,
40). Thus, an endocytic
trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured
hippocampal neurons. We find that intersectin-l is localized to the
somatodendritic regions of neurons, where it co-localizes with CHC and AP-2
and regulates the uptake of transferrin. Intersectin-l also co-localizes with
actin at dendritic spines and disrupting intersectin-l function alters
dendritic spine development. In contrast, intersectin-l is absent from
presynaptic terminals and has little or no role in SV recycling. 相似文献
98.
Gabor Er?s Saleh Ibrahim Nikolai Siebert Mihály Boros Brigitte Vollmar 《Arthritis research & therapy》2009,11(2):R43
Introduction
Phosphatidylcholine and phosphatidylcholine-derived metabolites exhibit anti-inflammatory properties in various stress conditions. We hypothesized that dietary phosphatidylcholine may potentially function as an anti-inflammatory substance and may decrease inflammatory activation in a chronic murine model of rheumatoid arthritis (collagen-induced arthritis). 相似文献99.
Dlmo基因编码一个32kDa的蛋白 总被引:1,自引:0,他引:1
为了获取研究Dlmo(果蝇LMO基因的简称)的功能信息,使用耦联网织红细胞体外翻译系统将Dlmo基因进行体外转录翻译得到32kDa的蛋白产物。该蛋白产物与抗人类LMO2蛋白的多抗抗体发生免疫沉淀,并得到了32kDa的阳性带。为了证实Dlmo基因在体外和体内翻译能得到同一大小蛋白,从2~4小时果蝇胚盘中分别抽提核和胞浆提取物进行Western印迹分析,免疫血清可以识别胞浆提取物中的32kDa蛋白,而在核提取物中未曾见到,证实体外和体内翻译产物相同。免疫组织化学的分析在0~4小时胚盘外周胞浆中有Dlmo基因的阳性染色信号,结果证实,Dlmo与人类LMO不同,其表达产物是一个胞浆蛋白。
Abstract:In order to gain some insight into a possible function of Dlmo gene,we used the TNT coupled reticulocyte lysate systems as an in vitro translation system to detect the Drosoplila protein. We found a 32kDa protein product.To demonstrate that the DLMO protein has the same size in vivo as in vitro we studied nuclear and cytoplasmic extracts from 2-4h embryos in Western blots. The immuno serum recognizes a 32kDa protein in the cytoplasm that is not present in the nucleus.The products were immune precipitated with the polyclonal anti-LMO2 antibody raised against the human protein and seen a positive band of 32kDa.Using immuno histochemical analysis was seen a positive staining in the basal cytoplasm of blastoderm embryos at 4 hours. This result confirms that the DLMO is a cytoplasmprotein, not like human LMO protein. 相似文献
100.