首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2983篇
  免费   251篇
  国内免费   2篇
  3236篇
  2023年   9篇
  2022年   11篇
  2021年   19篇
  2020年   14篇
  2019年   34篇
  2018年   45篇
  2017年   30篇
  2016年   49篇
  2015年   89篇
  2014年   91篇
  2013年   140篇
  2012年   207篇
  2011年   181篇
  2010年   138篇
  2009年   128篇
  2008年   163篇
  2007年   190篇
  2006年   195篇
  2005年   193篇
  2004年   182篇
  2003年   174篇
  2002年   151篇
  2001年   41篇
  2000年   24篇
  1999年   31篇
  1998年   51篇
  1997年   33篇
  1996年   34篇
  1995年   47篇
  1994年   33篇
  1993年   42篇
  1992年   40篇
  1991年   22篇
  1990年   27篇
  1989年   34篇
  1988年   22篇
  1987年   13篇
  1986年   17篇
  1985年   20篇
  1984年   27篇
  1983年   26篇
  1982年   26篇
  1981年   21篇
  1980年   23篇
  1979年   11篇
  1978年   25篇
  1977年   16篇
  1976年   13篇
  1975年   8篇
  1974年   12篇
排序方式: 共有3236条查询结果,搜索用时 15 毫秒
201.
Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat‐dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA. We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.  相似文献   
202.
203.
Ecological diversification of aquatic insects has long been suspected to have been driven by differences in freshwater habitats, which can be classified into flowing (lotic) waters and standing (lentic) waters. The contrasting characteristics of lotic and lentic freshwater systems imply different ecological constraints on their inhabitants. The ephemeral and discontinuous character of most lentic water bodies may encourage dispersal by lentic species in turn reducing geographical isolation among populations. Hence, speciation probability would be lower in lentic species. Here, we assess the impact of habitat use on diversification patterns in dragonflies (Anisoptera: Odonata). Based on the eight nuclear and mitochondrial genes, we inferred species diversification with a model‐based evolutionary framework, to account for rate variation through time and among lineages and to estimate the impact of larval habitat on the potentially nonrandom diversification among anisopteran groups. Ancestral state reconstruction revealed lotic fresh water systems as their original primary habitat, while lentic waters have been colonized independently in Aeshnidae, Corduliidae and Libellulidae. Furthermore, our results indicate a positive correlation of speciation and lentic habitat colonization by dragonflies: speciation rates increased in lentic Aeshnidae and Libellulidae, whereas they remain mostly uniform among lotic groups. This contradicts the hypothesis of inherently lower speciation in lentic groups and suggests species with larger ranges are more likely to diversify, perhaps due to higher probability of larger areas being dissected by geographical barriers. Furthermore, larger range sizes may comprise more habitat types, which could also promote speciation by providing additional niches, allowing the coexistence of emerging species.  相似文献   
204.
p27Kip1 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G1/S transition, and whose activity is, in part, regulated through interactions with D-type cyclins. We have generated the BD1-9 cell line, a BaF3 pro-B cells derivative in which cyclin D1 can be induced rapidly and reversibly by ponasterone A. The induction of cyclin D1 expression leads to a targeted p27Kip1 accumulation in both cytoplasmic and nuclear compartments. But, only the p27Kip1 form phosphorylated on serine 10 (pSer10-p27Kip1) accumulates in BD1-9 cells. We found that the binding of cyclin D1 and pSer10-p27Kip1 prevents p27Kip1 degradation by the cytoplasmic Kip1 ubiquitylation-promoting complex (KPC) proteosomic pathway. Importantly, the nuclear CDK2 activity which is crucial for G1/S transition is not altered by p27Kip1 increase. Using siRNA techniques, we revealed that p27Kip1 inhibition does not affect the distribution of BD1-9 cells in the different phases of the cell cycle. Our study demonstrates that aberrant cyclin D1 expression acts as a p27Kip1 trap in B lymphocytes but does not induce p27Kip1 relocation from the nucleus to the cytoplasm and does not modulate the G1/S transition. Since our cellular model mimics what observed in aggressive lymphomas, our data bring new insights into the understanding of their physiopathology.  相似文献   
205.
Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model.  相似文献   
206.
We have studied "in vivo" neurochemically identified striatal neurons to analyze the localisation and the trafficking of dopamine and acetylcholine G protein coupled receptors (GPCR) (D1R, D2R, m2R and m4R) under the influence of neurotransmitter environment. We have identified receptors in tissue sections through immunohistochemical detection at the light and electron microscopic level. We have identified receptors in normal animals and after acute and chronic stimulations. We have quantified receptors through image analysis at the electron microscopic level in relation to various subcellular compartments. Our results demonstrate that, in normal conditions, GPCRs are mostly associated with plasma membrane of the striatal neurons, mostly at extra-synaptic sites. In certain instances (m4R; D2R), receptors have prominent localisation inside the rough endoplasmic reticulum. Our results also show that two distinct receptors for a same neurotransmitter may have distinct subcellular localisation in a same neuronal population (m2R versus m4R) and that the same neurotransmitter receptor (m4R) can have distinct localisation in distinct neuronal populations (cytoplasm versus cell surface). After acute stimulation, cell surface receptors undergo dramatic subcellular changes that involve plasma membrane depletion, internalisation in endosomes and in multivesicular bodies. Such changes are reversible after the end of the stimulation and are blocked by antagonist action. Chronic stimulation also provokes changes in subcellular localisation with specific pattern: plasma membrane depletion, and exaggerated storage of receptors in rough endoplasmic reticulum and eventually Golgi complex (D1R; m2R and m4R). Decreasing chronic receptor stimulation reverses such changes. These results demonstrate that, "in vivo", in the striatum, GPCRs undergo complex intraneuronal trafficking under the influence of neurochemical environment in conditions that dramatically modulate the number of cell surface receptors available for interaction with neurotransmitters or drugs. This confirms that "in vivo", the trafficking and the subcellular compartmentalization of GPCRs may contribute to regulate neuronal sensitivity and neuronal interactions in physiological, experimental and pathological conditions, including in therapeutic conditions.  相似文献   
207.
We have used isoelectric focusing to measure the differences between the pI values of various normal and mutant human haemoglobins when completely deoxygenated and when fully liganded with CO. It was assumed that the ΔpI(deox.–ox.) values might correspond quantitatively to the intrinsic alkaline Bohr effect, as most of the anionic cofactors of the haemoglobin molecule are `stripped' off during the electrophoretic process. In haemoglobins known to exhibit a normal Bohr coefficient (ΔlogP50/ΔpH) in solutions, the ΔpI(deox.–ox.) values are lower the higher their respective pI(ox.) values. This indicates that for any particular haemoglobin the ΔpI(deox.–ox.) value accounts for the difference in surface charges at the pH of its pI value. This was confirmed by measuring, by the direct-titration technique, the difference in pH of deoxy and fully liganded haemoglobin A02β2) solutions in conditions approximating those of the isoelectric focusing, i.e. at 5°C and very low concentration of KCl. The variation of the ΔpH(deox.–ox.) curve as a function of pH (ox.) was similar to the isoelectric-focusing curve relating the variation of ΔpI(deox.–ox.) versus pI(ox.) in various haemoglobins with Bohr factor identical with that of haemoglobin A0. In haemoglobin A0 the ΔpI(deox.–ox.) value is 0.17 pH unit, which corresponds to a difference of 1.20 positive charges between the oxy and deoxy states of the tetrameric haemoglobin. This value compares favourably with the values of the intrinsic Bohr effect estimated in back-titration experiments. The ΔpI(deox.–ox.) values of mutant or chemically modified haemoglobins carrying an abnormality at the N- or C-terminus of the α-chains are decreased by 30% compared with the ΔpI value measured in haemoglobin A0. When the C-terminus of the β-chains is altered, as in Hb Nancy (α2βTyr-145→Asp2), we observed a 70% decrease in the ΔpI value compared with that measured in haemoglobin A0. These values are in close agreement with the estimated respective roles of the two major Bohr groups, Val-1α and His-146β, at the origin of the intrinsic alkaline Bohr effect [Kilmartin, Fogg, Luzzana & Rossi-Bernardi (1973) J. Biol. Chem. 248, 7039–7043; Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema (1980) J. Mol. Biol. 138, 649–670]. In other mutant haemoglobins it is demonstrated also that the ΔpI(deox.–ox.) value may be decreased or even suppressed when the substitution affects residues involved in the stability of the tetramer. These results support the interpretation proposed by Perutz, Kilmartin, Nishikura, Fogg, Butler & Rollema [(1980), J. Mol. Biol. 138, 649–670] for the mechanism of the alkaline Bohr effect, and also indicate that the transition between the two quaternary configurations is a prerequisite for the full expression of the alkaline Bohr effect.  相似文献   
208.
The binding profile of [(3)H]BHDP ([(3)H]N-benzyl-N'-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine) was evaluated. [(3)H]BHDP labelled a single class of binding sites with high affinity (K(d)=2-3 nM) in rat liver mitochondria and synaptic membranes. The pharmacological characterization of these sites using sigma reference compounds revealed that these sites are sigma receptors and, more particularly, sigma1 receptors. Indeed, BHDP inhibited [(3)H]pentazocine binding, a marker for sigma1 receptors, with high affinity in a competitive manner. BHDP is selective for sigma1 receptors since it did not show any relevant affinity for most of the other receptors, ion channels or transporters tested. Moreover, in an in vitro model of cellular hypoxia, BHDP prevented the fall in adenosine triphosphate (ATP) levels caused by 24 h hypoxia in cultured astrocytes. Taken together, these results demonstrate that [(3)H]BHDP is a potent and selective ligand for sigma1 receptors showing cytoprotective effects in astrocytes.  相似文献   
209.
210.
Microorganisms encounter diverse stress conditions in their native habitats but also during fermentation processes, which have an impact on industrial process performance. These environmental stresses and the physiological reactions they trigger, including changes in the protein folding/secretion machinery, are highly interrelated. Thus, the investigation of environmental factors, which influence protein expression and secretion is still of great importance. Among all the possible stresses, temperature appears particularly important for bioreactor cultivation of recombinant hosts, as reductions of growth temperature have been reported to increase recombinant protein production in various host organisms. Therefore, the impact of temperature on the secretion of proteins with therapeutic interest, exemplified by a model antibody Fab fragment, was analyzed in five different microbial protein production hosts growing under steady-state conditions in carbon-limited chemostat cultivations. Secretory expression of the heterodimeric antibody Fab fragment was successful in all five microbial host systems, namely Saccharomyces cerevisiae, Pichia pastoris, Trichoderma reesei, Escherichia coli and Pseudoalteromonas haloplanktis. In this comparative analysis we show that a reduction of cultivation temperature during growth at constant growth rate had a positive effect on Fab 3H6 production in three of four analyzed microorganisms, indicating common physiological responses, which favor recombinant protein production in prokaryotic as well as eukaryotic microbes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号