首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   21篇
  221篇
  2021年   5篇
  2020年   2篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2003年   4篇
  2001年   7篇
  2000年   5篇
  1999年   9篇
  1997年   3篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1973年   2篇
  1972年   3篇
  1971年   5篇
  1970年   5篇
  1969年   5篇
  1968年   6篇
  1967年   4篇
  1966年   2篇
  1965年   2篇
  1907年   2篇
  1905年   2篇
  1900年   2篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
191.
Summary The factors involved in the movement of monovalent cations across the inner membrane of the isolated heart mitochondrion are reviewed. The evidence suggests that the energy-dependent uptake of K+ and Na+ which results in swelling of the matrix is an electrophoretic response to a negative internal potential. There are no clear cut indications that this electrophoretic cation movement is carrier-mediated and possible modes of entry which do not require a carrier are examined. The evidence also suggests that the monovalent cation for proton exchanger (Na+ > K+) present in the membrane may participate in the energy-dependent extrusion of accumulated ions. The two processes, electrophoretic cation uptake (swelling) and exchange-dependent cation extrusion (contraction) may represent a means of controlling the volume of the mitochondrion within the functioning cell. A number of indications point to the possibility that the volume control process may be mediated by the divalent cations Ca+2 and Mg+2. Studies with mercurial reagents also implicate certain membrane thiol groups in the postulated volume control process.An invited article.  相似文献   
192.
Mitochondria must maintain volume homeostasis inorder to carry out oxidative phosphorylation. It has been postulatedthat the concentration of freeMg2+([Mg2+]) serves as thesensor of matrix volume and regulates aK+-extrudingK+/H+antiport (K. D. Garlid. J. Biol. Chem.255: 11273-11279, 1980). To test this hypothesis, the fluorescentprobe furaptra was used to monitor[Mg2+] and freeCa2+ concentration ([Ca2+]) in the matrix ofisolated beef heart mitochondria, andK+/H+antiport activity was measured by passive swelling in potassium acetate. Concentrations that result in 50% inhibition of maximum activity of 92 µM matrix [Mg2+] and 2.2 µM[Ca2+] were determined for theK+/H+ antiport. Untreated mitochondria average670 µM matrix [Mg2+], a value that would permit <1%of maximumK+/H+antiport activity. Hypotonic swelling results in large decreases inmatrix [Mg2+], butswelling due to accumulation of acetate salts does not alter[Mg2+]. Swelling inphosphate salts decreases matrix[Mg2+], but not tolevels that permit appreciable antiport activity. We conclude that1) it is unlikely that matrix[Mg2+] serves as themitochondrial volume sensor, 2) ifK+/H+antiport functions as a volume control transporter, it is probably regulated by factors other than[Mg2+], and3) alternative mechanisms formitochondrial volume control should be considered.

  相似文献   
193.
The retention and loss of energy-coupling reactions in isolated beef heart mitochondria have been examined under anaerobic conditions using suspending media chosen to mimic the intracellular milieu. In long-term incubations at 37 °C, a loose coupling develops which can be controlled by adding serum albumin. This lesion closely resembles that produced by addition of free fatty acids which has been described in previous studies. Shorter incubation times produce an increased susceptibility to hydrogen peroxide which is characterized by elevated ATPase activity, increased permeability to monovalent cations, and increased proton ejection on transition from the anaerobic to the aerobic state. This peroxide sensitivity is prevented by chelators such as EGTA and appears to involve a time-dependent release of metal ions. Of the metabolites which are known to increase in concentration in the ischemic heart cell, Na+, P1, lactate, and H+ all promote swelling of isolated heart mitochondria and contribute to a decline in energy coupling. The relationship of these results to the pathological deterioration of mitochondria in ischemic heart tissue is discussed.  相似文献   
194.
195.
Cyclosporin A prevents the opening of a nonspecific pore in the inner membrane of liver mitochondria when added prior to Ca2+. In the presence of 10 microM Ca2+ cyclosporin is unable to close the pore and restore the original permeability unless ADP is also added. ADP acts at a high-affinity site (Km 5 microM), corresponding to the adenine nucleotide transporter. This effect of ADP is prevented and reversed by carboxyatractyloside. In the presence of carboxyatractyloside, cyclosporin added with higher concentrations of ADP (Km 70 microM) also can close the pore. This suggests that a lower-affinity ADP-binding component as well as cyclophilin and the adenine nucleotide transporter can modulate the sensitivity of the pore to cyclosporin.  相似文献   
196.
197.
A one hour hypoxic incubation causes the release of a small but significant amount of cytosolic lactic dehydrogenase from glucose-deprived isolated adult rat heart myocytes. However, enzymes associated with the mitochondria are not liberated, and there is no increase in the number of hypercontracted cells. These observations led Piper et al. (Life Sciences 35, 127-134 [1984]) to conclude that reversibly injured myocytes can release cytosolic proteins. This conclusion was based on the supposition that irreversibly hypoxic injury must cause mitochondrial enzyme efflux and hypercontracture. The present study establishes that this supposition is invalid.  相似文献   
198.
Data from a cruise in 1996 in the Southern Ocean near the islandof South Georgia indicate that ammonium concentrations in near-surfacewaters (top 30 m of the water column) varied diurnally by  相似文献   
199.
200.
Summary The effect of hydrostatic pressure on the activity of Thiobacillus ferrooxidans grown on chalcopyrite concentrate has been investigated. It was found that bacterial activity, measured by conventional respirometry, was little affected by subjecting these microorganisms to a pressure of 100 lbs/in2 (690 kPa). The total cooper concentration was as high as 18 g/l in 28 days of leaching at atmospheric pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号