首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   88篇
  国内免费   17篇
  909篇
  2021年   15篇
  2020年   9篇
  2017年   11篇
  2016年   15篇
  2015年   15篇
  2014年   18篇
  2013年   30篇
  2012年   42篇
  2011年   34篇
  2010年   28篇
  2009年   21篇
  2008年   31篇
  2007年   22篇
  2006年   17篇
  2005年   23篇
  2004年   11篇
  2003年   14篇
  2002年   21篇
  2001年   30篇
  2000年   17篇
  1999年   22篇
  1998年   13篇
  1997年   10篇
  1996年   12篇
  1995年   14篇
  1994年   9篇
  1992年   13篇
  1991年   11篇
  1990年   16篇
  1989年   13篇
  1988年   19篇
  1987年   20篇
  1986年   16篇
  1985年   15篇
  1984年   14篇
  1983年   9篇
  1981年   19篇
  1979年   22篇
  1978年   14篇
  1977年   17篇
  1976年   19篇
  1975年   10篇
  1974年   7篇
  1973年   14篇
  1972年   13篇
  1971年   9篇
  1970年   11篇
  1969年   9篇
  1967年   7篇
  1966年   8篇
排序方式: 共有909条查询结果,搜索用时 15 毫秒
51.
Fish oil-enriched long chain n-3 polyunsaturated fatty acids disrupt the molecular organization of T-cell proteins in the immunological synapse. The impact of fish oil derived n-3 fatty acids on antigen-presenting cells, particularly at the animal level, is unknown. We previously demonstrated B-cells isolated from mice fed with fish oil-suppressed naïve CD4+ T-cell activation. Therefore, here we determined the mechanistic effects of fish oil on murine B-cell major histocompatibility complex (MHC) class II molecular distribution using a combination of total internal reflection fluorescence, Förster resonance energy transfer and confocal imaging. Fish oil had no impact on presynaptic B-cell MHC II clustering. Upon conjugation with transgenic T-cells, fish-oil suppressed MHC II accumulation at the immunological synapse. As a consequence, T-cell protein kinase C theta (PKCθ) recruitment to the synapse was also diminished. The effects were independent of changes in B-T cell adhesion, as measured with microscopy, flow cytometry and static cell adhesion assays with select immune ligands. Given that fish oil can reorganize the membrane by lowering membrane cholesterol levels, we then compared the results with fish oil to cholesterol depletion using methyl-B-cyclodextrin (MβCD). MβCD treatment of B-cells suppressed MHC II and T-cell PKCθ recruitment to the immunological synapse, similar to fish oil. Overall, the results reveal commonality in the mechanism by which fish oil manipulates protein lateral organization of B-cells compared to T-cells. Furthermore, the data establish MHC class II lateral organization on the B-cell side of the immunological synapse as a novel molecular target of fish oil.  相似文献   
52.
53.
54.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure–activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.  相似文献   
55.
The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.  相似文献   
56.
The catalytic subunit, Pol, of herpes simplex virus DNA polymerase interacts via its extreme C terminus with the processivity subunit, UL42. This interaction is critical for viral replication and thus a potential target for antiviral drug action. To investigate the Pol-binding region on UL42, we engineered UL42 mutations but also used random peptide display to identify artificial ligands of the Pol C terminus. The latter approach selected ligands with homology to residues 171 to 176 of UL42. Substitution of glutamine 171 with alanine greatly impaired binding to Pol and stimulation of long-chain DNA synthesis by Pol, identifying this residue as crucial for subunit interactions. To study these interactions quantitatively, we used isothermal titration calorimetry and wild-type and mutant forms of Pol-derived peptides and UL42. Each of three peptides corresponding to either the last 36, 27, or 18 residues of Pol bound specifically to UL42 in a 1:1 complex with a dissociation constant of 1 to 2 microM. Thus, the last 18 residues suffice for most of the binding energy, which was due mainly to a change in enthalpy. Substitutions at positions corresponding to Pol residue 1228 or 1229 or at UL42 residue 171 abolished or greatly reduced binding. These residues participate in hydrogen bonds observed in the crystal structure of the C terminus of Pol bound to UL42. Thus, interruption of these few bonds is sufficient to disrupt the interaction, suggesting that small molecules targeting the relevant side chains could interfere with Pol-UL42 binding.  相似文献   
57.
Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance regulator could serve as both a HCO-3 and a Cl- channel, mediating the apical membrane exit of either anion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these results with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then HCO-3 secretion in the human airways warrants greater attention.  相似文献   
58.
Potential of real-time measurement of GFP-fusion proteins   总被引:1,自引:0,他引:1  
Building on the basic design concepts of Randers-Eichhorn [Biotechnol. Bioeng. 55 (1997) 921], an on-line, real-time robust, steam sterilisable optical sensor for monitoring green fluorescent protein (GFP) has been developed. A general cloning vector for fusion expression proteins was constructed, allowing expression of both GFP and the target protein as a fusion. Cultivations were carried out at the 20l scale with the signal from the sensor being relayed directly to the control system of the bioreactors. The production of GFP was then measured on-line, the signal was interfaced directly with other controlling parameters, thereby allowing the microbial process to be controlled directly based on recombinant protein expression. A positive expression correlation between on-line and off-line data was obtained. Protein accretion measured off-line was quantified using both LC-MS and plate reader assays. The potential of such a sensor for many aspects of process development is considerable and we have developed a working system which allows the optimisation of production conditions, for example, linking pH control directly to the fusion protein. Results are also presented that illustrate GFP does not alter the cultivation characteristics of the target protein when compared to the native construct. Whether GFP expressed as a fusion influences the solubility of the target protein is also discussed.  相似文献   
59.
In an effort to identify new approaches to lead discovery a polyvalent assay was developed to allow identification of weak inhibitors. This approach involves the polyvalent display of a protein binder off a Tenta-gel scaffold and the generation of a polyvalent display of protein by biotinylation followed by complexation with fluorescently labeled streptavidin. Subsequent exposure of the streptavidin complexed protein to Tenta-gel beads with active protein binders results in fluorescent beads, which are easily viewed under a fluorescent microscope.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号