全文获取类型
收费全文 | 624篇 |
免费 | 78篇 |
专业分类
702篇 |
出版年
2023年 | 4篇 |
2022年 | 5篇 |
2021年 | 22篇 |
2020年 | 11篇 |
2019年 | 8篇 |
2018年 | 17篇 |
2017年 | 16篇 |
2016年 | 18篇 |
2015年 | 34篇 |
2014年 | 40篇 |
2013年 | 40篇 |
2012年 | 51篇 |
2011年 | 43篇 |
2010年 | 30篇 |
2009年 | 34篇 |
2008年 | 35篇 |
2007年 | 30篇 |
2006年 | 34篇 |
2005年 | 35篇 |
2004年 | 24篇 |
2003年 | 24篇 |
2002年 | 21篇 |
2001年 | 8篇 |
2000年 | 8篇 |
1999年 | 15篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1996年 | 9篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1991年 | 7篇 |
1990年 | 8篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1985年 | 3篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1977年 | 2篇 |
1974年 | 3篇 |
1973年 | 2篇 |
1965年 | 1篇 |
1964年 | 2篇 |
1961年 | 3篇 |
1960年 | 1篇 |
1930年 | 1篇 |
1908年 | 1篇 |
1905年 | 1篇 |
排序方式: 共有702条查询结果,搜索用时 0 毫秒
51.
Background
Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae.Methods
We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses.Results
We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth.Conclusions
Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.Electronic supplementary material
The online version of this article (doi:10.1186/s12711-014-0065-5) contains supplementary material, which is available to authorized users. 相似文献52.
53.
Background
Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP).Findings
We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype.Conclusions
Thus, we propose to name the c.[349 T > C] allele in donkeys, the anlp allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.Electronic supplementary material
The online version of this article (doi:10.1186/s12711-015-0112-x) contains supplementary material, which is available to authorized users. 相似文献54.
Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome 下载免费PDF全文
Hanein S Martin E Boukhris A Byrne P Goizet C Hamri A Benomar A Lossos A Denora P Fernandez J Elleuch N Forlani S Durr A Feki I Hutchinson M Santorelli FM Mhiri C Brice A Stevanin G 《American journal of human genetics》2008,82(4):992-1002
Hereditary spastic paraplegias (HSPs) are genetically and phenotypically heterogeneous disorders. Both "uncomplicated" and "complicated" forms have been described with various modes of inheritance. Sixteen loci for autosomal-recessive "complicated" HSP have been mapped. The SPG15 locus was first reported to account for a rare form of spastic paraplegia variably associated with mental impairment, pigmented maculopathy, dysarthria, cerebellar signs, and distal amyotrophy, sometimes designated as Kjellin syndrome. Here, we report the refinement of SPG15 to a 2.64 Mb genetic interval on chromosome 14q23.3-q24.2 and the identification of ZFYVE26, which encodes a zinc-finger protein with a FYVE domain that we named spastizin, as the cause of SPG15. Six different truncating mutations were found to segregate with the disease in eight families with a phenotype that included variable clinical features of Kjellin syndrome. ZFYVE26 mRNA was widely distributed in human tissues, as well as in rat embryos, suggesting a possible role of this gene during embryonic development. In the adult rodent brain, its expression profile closely resembled that of SPG11, another gene responsible for complicated HSP. In cultured cells, spastizin colocalized partially with markers of endoplasmic reticulum and endosomes, suggesting a role in intracellular trafficking. 相似文献
55.
Background
Chronic lymphocytic leukemia (CLL) is typically regarded as an indolent B-cell malignancy. However, there is wide variability with regards to need for therapy, time to progressive disease, and treatment response. This clinical variability is due, in part, to biological heterogeneity between individual patients’ leukemias. While much has been learned about this biological variation using genomic approaches, it is unclear whether such efforts have sufficiently evaluated biological and clinical heterogeneity in CLL.Methods
To study the extent of genomic variability in CLL and the biological and clinical attributes of genomic classification in CLL, we evaluated 893 unique CLL samples from fifteen publicly available gene expression profiling datasets. We used unsupervised approaches to divide the data into subgroups, evaluated the biological pathways and genetic aberrations that were associated with the subgroups, and compared prognostic and clinical outcome data between the subgroups.Results
Using an unsupervised approach, we determined that approximately 600 CLL samples are needed to define the spectrum of diversity in CLL genomic expression. We identified seven genomically-defined CLL subgroups that have distinct biological properties, are associated with specific chromosomal deletions and amplifications, and have marked differences in molecular prognostic markers and clinical outcomes.Conclusions
Our results indicate that investigations focusing on small numbers of patient samples likely provide a biased outlook on CLL biology. These findings may have important implications in identifying patients who should be treated with specific targeted therapies, which could have efficacy against CLL cells that rely on specific biological pathways. 相似文献56.
Aung T Ocaka L Ebenezer ND Morris AG Brice G Child AH Hitchings RA Lehmann OJ Bhattacharya SS 《Human genetics》2002,110(5):513-514
OPA1, the gene responsible for autosomal dominant optic atrophy, represents a good candidate gene for glaucoma, as there are similarities in the clinical phenotype and OPA1 is expressed in the optic nerve. Single nucleotide polymorphisms on intervening sequence (IVS) 8 of the OPA1gene (genotype IVS8+4 C/T;+32T/C) were recently found to be strongly associated with normal tension glaucoma (NTG). In order to investigate whether this association exists in patients with high-tension glaucoma (HTG), 90 well-characterized HTG patients were examined for the presence of these OPA1polymorphisms by PCR amplification followed by bi-directional sequencing. Five out of 90 HTG subjects (5.6%; 95% CI 1.8-12.5) were found to carry the OPA1 genotype IVS 8+4 C/T; +32 T/C, compared with 32/163 (19.6%; 95% CI 13.8-26.6) NTG subjects [chi(2)=9.2, P=0.002, OR 4.1 (95% CI 1.6-11.1)], and 7/186 (3.8%; 95% CI 1.5-7.6) control subjects [chi(2)=0.47, P=0.49, OR 1.5 (95% CI 0.5-4.9)]. These results indicate that unlike NTG, the OPA1 genotype IVS8+4 C/T,+32T/C is not significantly associated with high-tension primary open angle glaucoma, and suggest genetic heterogeneity between the conditions. 相似文献
57.
Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. 下载免费PDF全文
P Giunti G Stevanin P F Worth G David A Brice N W Wood 《American journal of human genetics》1999,64(6):1594-1603
The SCA7 mutation has been found in 54 patients and 7 at-risk subjects from 17 families who have autosomal dominant cerebellar ataxia (ADCA) II with progressive pigmentary maculopathy. In one isolated case, haplotype reconstruction through three generations confirmed a de novo mutation owing to paternal meiotic instability. Different disease-associated haplotypes segregated among the SCA7-positive kindreds, which indicated a multiple origin of the mutation. One family with the clinical phenotype of ADCA type II did not have the CAG expansion that indicated locus heterogeneity. The distribution of the repeat size in 944 independent normal chromosomes from controls, unaffected at-risk subjects, and one affected individual fell into two ranges. The majority of the alleles were in the first range of 7-19 CAG repeats. A second range could be identified with 28-35 repeats, and we provide evidence that these repeats represent intermediate alleles that are prone to further expansion. The repeat size of the pathological allele, the widest reported for all CAG-repeat disorders, ranged from 37 to approximately 220. The repeat size showed significant negative correlation with both age at onset and age at death. Analysis of the clinical features in the patients with SCA7 confirmed that the most frequently associated features are pigmentary maculopathy, pyramidal tract involvement, and slow saccades. The subjects with <49 repeats tended to have a less complicated neurological phenotype and a longer disease duration, whereas the converse applied to subjects with >/=49 repeats. The degree of instability during meiotic transmission was greater than in all other CAG-repeat disorders and was particularly striking in paternal transmission, in which a median increase in repeat size of 6 and an interquartile range of 12 were observed, versus a median increase of 3 and interquartile range of 3.5 in maternal transmission. 相似文献
58.
59.
A colorimetric determination of inositol monophosphates as an assay for d-glucose 6-phosphate–1l-myoinositol 1-phosphate cyclase 总被引:4,自引:0,他引:4 下载免费PDF全文
A rapid and convenient chemical assay for the enzyme d-glucose 6-phosphate-1l-myoinositol 1-phosphate cyclase is described. The 1l-myoinositol 1-phosphate formed enzymically was oxidized with periodic acid liberating inorganic phosphate, which was assayed. myoInositol 2-phosphate can be assayed in the same way. Glucose 6-phosphate and other primary phosphate esters gave only very small quantities of inorganic phosphate under the conditions described. The K(m) of the enzyme for d-glucose 6-phosphate, 7.5+/-2.5x10(-4)m, was identical with that measured by the radiochemical method. 2-Deoxy-d-glucose 6-phosphate was a powerful competitive inhibitor, K(i) 2.0+/-0.5x10(-5)m, but was not a substrate for the enzyme. 相似文献
60.
Matthew P. Rubach Jackson Mukemba Salvatore Florence Bert K. Lopansri Keith Hyland Alicia D. Volkheimer Tsin W. Yeo Nicholas M. Anstey J. Brice Weinberg Esther D. Mwaikambo Donald L. Granger 《PLoS pathogens》2015,11(3)
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH4 would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH4] and the oxidized metabolites, dihydrobiopterin [BH2] and biopterin [B0]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55–2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups — UM (2.10 [IQR:1.32–3.14];p<0.001), NMC (1.52 [IQR:1.01–2.71];p = 0.002), and HC (1.60 [IQR:1.15–2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89–7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria. 相似文献