首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   7篇
  国内免费   1篇
  129篇
  2023年   4篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   10篇
  2017年   1篇
  2016年   9篇
  2015年   12篇
  2014年   12篇
  2013年   19篇
  2012年   10篇
  2011年   12篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Introduction: Mass spectrometry (MS) is the premier tool for discovering novel disease-associated protein biomarkers. Unfortunately, when applied to complex body fluid samples, MS has poor sensitivity for the detection of low abundance biomarkers (?10 ng/mL), derived directly from the diseased tissue cells or pathogens.

Areas covered: Herein we discuss the strengths and drawbacks of technologies used to concentrate low abundance analytes in body fluids, with the aim to improve the effective sensitivity for MS discovery. Solvent removal by dry-down or dialysis, and immune-depletion of high abundance serum or plasma proteins, is shown to have disadvantages compared to positive selection of the candidate biomarkers by affinity enrichment. A theoretical analysis of affinity enrichment reveals that the yield for low abundance biomarkers is a direct function of the binding affinity (Association/Dissociation rates) used for biomarker capture. In addition, a high affinity capture pre processing step can effectively dissociate the candidate biomarker from partitioning with high abundance proteins such as albumin.

Expert commentary: Properly designed high affinity capture materials can enrich the yield of low abundance (0.1–10 picograms/mL) candidate biomarkers for MS detection. Affinity capture and concentration, as an upfront step in sample preparation for MS, combined with MS advances in software and hardware that improve the resolution of the chromatographic separation can yield a transformative new class of low abundance biomarkers predicting disease risk or disease latency.  相似文献   
25.
Although numbers of giant anteaters within North American facilities have been steadily increasing for the last 15 years, the population now exhibits an unstable age distribution with genetically valuable individuals nearing reproductive senescence. Contributing to this issue is the Association of Zoos and Aquariums (AZA) described lack of standardization of breeding introduction practices and high risk of female injury occurring during such pairings. This report describes the development of a successful breeding protocol at Cleveland Metroparks Zoo based on hormone monitoring and efficient communication between science and animal management teams that minimizes risk of female injury. By training a female giant anteater for urine sample and body weight data collection, staff members accurately predicted estrus, and timed breeding introductions to facilitate positive interactions between the male and female. Such training also allowed for careful monitoring of two pregnancies through parturition (169–184 days from breeding) and post‐partum return to estrus (114–129 days from parturition). Urinary hormone monitoring revealed a sharp progestogen increase averaging >five‐fold over basal levels (0.52 ± 0.05 ng/mg creatinine) which was sustained throughout the second half of pregnancy. Mean regular estrous cycle length (n = 14 cycles), was calculated as 46.17 ± 1.39 days, measured as days between estrogen peaks of mean concentration 2.27 ± 0.19 ng/mg creatinine. This report summarizes impressive collaborative efforts among multiple zoological departments to achieve extensive hormonal and body weight monitoring from a female giant anteater, adding valuable information on reproductive parameters, and specifics for novel hormone assay techniques.  相似文献   
26.
Seventy-kilodalton heat shock proteins (Hsp70s) are molecular chaperones essential for maintaining cellular homeostasis. Apart from their indispensable roles in protein homeostasis, specific Hsp70s localize at the plasma membrane and bind to specific lipids. The interaction of Hsp70s with lipids has direct physiological outcomes including lysosomal rescue, microautophagy, and promotion of cell apoptosis. Despite these essential functions, the Hsp70-lipid interactions remain largely uncharacterized. In this study, we characterized the interaction of HspA1A, an inducible Hsp70, with five phospholipids. We first used high concentrations of potassium and established that HspA1A embeds in membranes when bound to all anionic lipids tested. Furthermore, we found that protein insertion is enhanced by increasing the saturation level of the lipids. Next, we determined that the nucleotide-binding domain (NBD) of the protein binds to lipids quantitatively more than the substrate-binding domain (SBD). However, for all lipids tested, the full-length protein is necessary for embedding. We also used calcium and reaction buffers equilibrated at different pH values and determined that electrostatic interactions alone may not fully explain the association of HspA1A with lipids. We then determined that lipid binding is inhibited by nucleotide-binding, but it is unaffected by protein-substrate binding. These results suggest that the HspA1A lipid-association is specific, depends on the physicochemical properties of the lipid, and is mediated by multiple molecular forces. These mechanistic details of the Hsp70-lipid interactions establish a framework of possible physiological functions as they relate to chaperone regulation and localization.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0636-6) contains supplementary material, which is available to authorized users.  相似文献   
27.
Domestic guinea pigs (Cavia aperea f. porcellus) in laboratories have been shown to actively avoid the centers of their cages. This experiment tested a novel, dark-colored “shader” placed over the central portion of a cage. Based on the observed behavior of wild guinea pig species, it was hypothesized that utilization of the central portion of the cage would increase when the shader was present. Eleven male and 11 female albino, 3-week-old Hartley guinea pigs (Crl:HA) experienced the control and treatment conditions in a crossover study design. They spent more time in central cage sections when the shader was present and spent more time in and around the food hopper when the shader was absent (p < .001). Differences between sexes included increased inactivity in males versus females (p < .05) and a difference in time spent in a corner section of the cage (p < .001), likely associated with location in the room. We concluded that the presence of a shader increased utilization of cage space, which appeared to provide a similar increase in space utilization as structural enrichments.  相似文献   
28.
Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.  相似文献   
29.
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s?1], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber‐based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m?2 s?1 in 2005 to 4.6 ± 0.16 μmol m?2 s?1 in 2011). Soil efflux remained at ~3.3 μmol m?2 s?1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m?2 s?1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s?1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2 = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号