首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   23篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   14篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   13篇
  2011年   10篇
  2010年   10篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   11篇
  2003年   4篇
  2002年   7篇
  2000年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
61.
62.
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2flox/flox;Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.  相似文献   
63.
Adult male Tibetan(Macaca thibetana), Barbary(M. sylvanus), and stump-tailed macaques(M. arctoides) engage in bridging, a ritualized infant-handling behavior. Previous researchers found a bias toward the use of male infants for this behavior, but its function is debated. Explanations include three hypotheses: paternal care, mating effort, and agonistic buffering. We studied a group of habituated, provisioned Tibetan macaques to test whether adult males' affiliative relationships with females predicted their use of an infant for bridging. We also examined biases for sex, age, and individual in males' choice of bridging infant. We collected data via all occurrences, focal animal, and scan methods, from August to September 2011 at the Valley of the Wild Monkeys, China. We found that male infants were significantly preferred over females for bridging, but of three male infants in the group, only one was used by all males, while one male infant was used less often than expected. Adult males had females they were significantly more likely to be proximate to and/or to groom, but these corresponded to the mother of the bridging infant for only one male. Our results are most consistent with the agonistic buffering hypothesis: lower-ranked males used the alpha male's preferred bridging infant in an attempt to regulate their interactions with the alpha.  相似文献   
64.
Yersinia enterocolitica biovar 1B is one of a number of strains pathogenic to humans in the genus Yersinia. It has three different type III secretion systems, Ysc, Ysa, and the flagella. In this study, the effect of flagella on biofilm formation was evaluated. In a panel of 31 mutant Y. enterocolitica strains, we observed that mutations that abolish the structure or rotation of the flagella greatly reduce biofilm formation when the bacteria are grown under static conditions. These results were further evaluated by assessing biofilm formation under continuous culture using a flow cell chamber. The results confirmed the important contribution of flagella to the initiation of biofilm production but indicated that there are differences in the progression of biofilm development between static growth and flow conditions. Our results suggest that flagella play a critical role in biofilm formation in Y. enterocolitica.  相似文献   
65.
Drawing a direct connection between adaptive evolution at the phenotypic level and underlying genetic factors has long been a major goal of evolutionary biologists, but the genetic characterization of adaptive traits in natural populations is notoriously difficult. The study of evolution in experimental populations offers some help — initial conditions are known and changes can be tracked for extended periods under conditions more controlled than wild populations and more realistic than laboratory or greenhouse experiments. In this issue of Molecular Ecology , researchers studying experimental wheat populations over a 12-year period have demonstrated evolution in a major adaptive trait, flowering time, and parallel changes in underlying genetic variation ( Rhoné et al . 2008 ). Their work suggests that cis -regulatory mutations at a single gene may explain most of the flowering time variation in these populations.  相似文献   
66.
67.
Reconstruction of early Pleistocene hominin carcass acquisition and processing behaviors are necessarily based at least in part on butchered fossil bones. This paper provides zooarchaeological and taphonomic analyses and behavioral interpretations of three approximately 1.5 million-year-old archaeofaunas from areas 1A and 103 in the Okote Member of the Koobi Fora Formation, northern Kenya: FwJj14A, FwJj14B, and GaJi14. These sites are all located in similar paleoenvironmental contexts, near shallow water with swampy, seasonally flooded areas, and some evidence for more wooded or gallery forest settings. Both individual specimen--and assemblage-level analyses of butchery-marked bones indicate that the hominins appear to have practiced similar butchery strategies at all of these sites, with butchery (defleshing, disarticulation, and marrow extraction) of both high- and low-ranked skeletal elements with no apparent preference for prey size, skeletal region, limb class, or limb portion. Only four tooth-marked specimens, including one likely crocodile-tooth-marked bone, are preserved in all three archaeofaunas. A paucity of limb epiphyses suggests that bone-crunching hyenids may have deleted these portions subsequent to hominin butchery. Strangely, there are no stone tools preserved with the 292 cut-marked and 27 percussion-marked faunal specimens (out of a total of 6,039 specimens), suggesting that raw material availability may have conditioned hominin lithic discard patterns at these locales. These assemblages increase our knowledge of the dietary behavior and ecology of Homo erectus, and provide support for variability in early Pleistocene hominin carcass foraging patterns.  相似文献   
68.
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co‐occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long‐term datasets (line‐transect surveys, whale‐watching records, net sampling, stable isotope analysis, and remote‐sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long‐term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.  相似文献   
69.
Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA‐dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA‐ComFC duo at the interface between DNA uptake and DNA recombination during transformation.  相似文献   
70.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号