全文获取类型
收费全文 | 18545篇 |
免费 | 1585篇 |
国内免费 | 4篇 |
专业分类
20134篇 |
出版年
2023年 | 66篇 |
2022年 | 151篇 |
2021年 | 321篇 |
2020年 | 174篇 |
2019年 | 231篇 |
2018年 | 322篇 |
2017年 | 281篇 |
2016年 | 403篇 |
2015年 | 793篇 |
2014年 | 850篇 |
2013年 | 1071篇 |
2012年 | 1494篇 |
2011年 | 1458篇 |
2010年 | 880篇 |
2009年 | 869篇 |
2008年 | 1201篇 |
2007年 | 1219篇 |
2006年 | 1109篇 |
2005年 | 1125篇 |
2004年 | 991篇 |
2003年 | 927篇 |
2002年 | 904篇 |
2001年 | 192篇 |
2000年 | 141篇 |
1999年 | 187篇 |
1998年 | 271篇 |
1997年 | 161篇 |
1996年 | 147篇 |
1995年 | 143篇 |
1994年 | 127篇 |
1993年 | 119篇 |
1992年 | 98篇 |
1991年 | 85篇 |
1990年 | 94篇 |
1989年 | 88篇 |
1988年 | 80篇 |
1987年 | 56篇 |
1986年 | 77篇 |
1985年 | 77篇 |
1984年 | 99篇 |
1983年 | 76篇 |
1982年 | 86篇 |
1981年 | 105篇 |
1980年 | 91篇 |
1979年 | 60篇 |
1978年 | 73篇 |
1977年 | 58篇 |
1976年 | 44篇 |
1974年 | 63篇 |
1973年 | 42篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
Brian Waldrop Richard B. Levine 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,171(2):195-205
1. Intersegmental interneurons (INs) that participate in the larval bending reflex and the pupal gin trap closure reflex were identified in the isolated ventral nerve cord of Manduca sexta. INs 305, 504, and 703 show qualitatively different responses in the pupa than in the larva to electrical stimulation of sensory neurons that are retained during the larval-pupal transition to serve both reflexes. Action potentials produced by current injected into the 3 interneurons excite motor neurons that are directly involved in the larval and pupal reflexes. The excitation of the motor neurons is not associated with EPSPs at a fixed latency following action potentials in the interneurons, and thus there do not seem to be direct synaptic connections between the interneurons and the motor neurons. 2. IN 305 (Fig. 2) has a lateral soma, processes in most of the dorsal neuropil ipsilateral to the soma, and a crossing neurite that gives rise to a single contralateral descending axon. IN 305 is excited by stimulation of the sensory nerve ipsilateral to its soma in the larva and the pupa. Stimulation of the sensory nerve contralateral to its soma produces an inhibitory response in the larva, but a mixed excitatory/inhibitory response to the identical stimulus in the pupa. 3. IN 504 (Fig. 3) has a lateral soma, processes throughout most of the neuropil ipsilateral to the soma, and a crossing neurite that bifurcates to give rise to a process extending to the caudal limit of the neuropil and an ascending axon. IN 504 is excited by stimulation of the sensory nerve ipsilateral to its soma in both larvae and pupae, while the response to stimulation of the sensory nerve contralateral to its soma is inhibitory in the larva but mixed (excitatory/inhibitory) in the pupa. 4. IN 703 has a large antero-lateral soma, a neurite that extends across to the contralateral side giving rise to processes located primarily dorsally in both ipsilateral and contralateral neuropils, and two axons that ascend and descend in the connectives contralateral to the soma (Fig. 4). IN 703 responds to stimulation of the sensory nerves on either side of the ganglion, but the form of the response changes during the larval-pupal transition. In the larva, the response consists of very phasic (0-2 spikes) excitation, but in the pupa there is a prolonged excitation that greatly outlasts the stimulus (Fig. 6).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
112.
Aldosterone elicits rapid physiological responses in target tissues such as the distal nephron through the stimulation of cell signaling cascades. We identified protein kinase D (PKD1) as an early signaling response to aldosterone treatment in the M1-cortical collecting duct (M1-CCD) cell line. PKD1 activation was blocked by the PKC inhibitor chelerythrine chloride and by rottlerin, a specific inhibitor of PKCdelta. The activation of PKCdelta and PKCepsilon coincided with PKD1 activation and while a complex was formed between PKD1 and PKCepsilon after aldosterone treatment, there was a concurrent reduction in PKD1 association with PKCdelta. A stable PKD1 knockdown M1-CCD-derrived clone was developed in which PKD1 expression was 90% suppressed by gene silencing with a PKD1-specific siRNA. The effect of aldosterone treatment on the subcellular distribution of enhanced cyan fluorescent protein (eCFP)-tagged epithelial sodium channel (ENaC) subunits in wild type (WT) and PKD1 suppressed cells was examined using confocal microscopy. In an untreated confluent monolayer of M1-CCD cells, alpha, beta, and gamma ENaC subunits were evenly distributed throughout the cytoplasm of WT and PKD1-suppressed cells. After 2 min treatment, aldosterone stimulated the localization of each of the ENaC subunits to discrete regions within the cytoplasm of WT cells. The translocation of eCFP-ENaC subunits in WT cells was inhibited by rottlerin and the mineralocorticoid receptor (MR) antagonist spironolactone. No subcellular translocation of eCFP-ENaC subunits was observed in PKD1-suppressed cells treated with aldosterone. These data demonstrate the involvement of a novel MR/PKCdelta /PKD1 signaling cascade in the earliest ENaC subunit intracellular trafficking events that follow aldosterone treatment. 相似文献
113.
Fekrije Selimi Ileana M Cristea Elizabeth Heller Brian T Chait Nathaniel Heintz 《PLoS biology》2009,7(4)
Precise neuronal networks underlie normal brain function and require distinct classes of synaptic connections. Although it has been shown that certain individual proteins can localize to different classes of synapses, the biochemical composition of specific synapse types is not known. Here, we have used a combination of genetically engineered mice, affinity purification, and mass spectrometry to profile proteins at parallel fiber/Purkinje cell synapses. We identify approximately 60 candidate postsynaptic proteins that can be classified into 11 functional categories. Proteins involved in phospholipid metabolism and signaling, such as the protein kinase MRCKγ, are major unrecognized components of this synapse type. We demonstrate that MRCKγ can modulate maturation of dendritic spines in cultured cortical neurons, and that it is localized specifically to parallel fiber/Purkinje cell synapses in vivo. Our data identify a novel synapse-specific signaling pathway, and provide an approach for detailed investigations of the biochemical complexity of central nervous system synapse types. 相似文献
114.
Skaff DA Ramyar KX McWhorter WJ Barta ML Geisbrecht BV Miziorko HM 《Biochemistry》2012,51(23):4713-4722
Hymeglusin (1233A, F244, L-659-699) is established as a specific β-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 ?) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity. 相似文献
115.
Monika A. Davare Sangeet Lal Jennifer L. Peckham Suresh I. Prajapati Sakir H. Gultekin Brian P. Rubin Charles Keller 《Biochemical and biophysical research communications》2014
Leptomeningeal metastasis is a cause of morbidity and mortality in medulloblastoma, but the understanding of molecular mechanisms driving this process is nascent. In this study, we examined the secretory chemokine profile of medulloblastoma cells (DAOY) and a meningothelial cell line (BMEN1). Conditioned media (CM) of meningothelial cells increased adhesion, spreading and migration of medulloblastoma. VEGFA was identified at elevated levels in the CM from BMEN1 cells (as compared to DAOY CM); however, recombinant VEGFA alone was insufficient to enhance medulloblastoma cell migration. In addition, bevacizumab, the VEGFA scavenging monoclonal antibody, did not block the migratory phenotype induced by the CM. These results reveal that paracrine factors secreted by meningothelial cells can influence migration and adherence of medulloblastoma tumor cells, but VEGFA may not be a specific target for therapeutic intervention in this context. 相似文献
116.
Unstable alleles at three unlinked loci (delilah, nivea and pallida) can mutate somatically to allow the production of clones of pigmented cells (“flakes”) in particular parts of the corolla. The size of the flakes depends on the timing of the mutations during the development of the flower. 相似文献
117.
Thomas VL Golemi-Kotra D Kim C Vakulenko SB Mobashery S Shoichet BK 《Biochemistry》2005,44(26):9330-9338
Beta-lactamase confers resistance to penicillin-like antibiotics by hydrolyzing their beta-lactam bond. To combat these enzymes, inhibitors covalently cross-linking the hydrolytic Ser70 to Ser130 were introduced. In turn, mutant beta-lactamases have emerged with decreased susceptibility to these mechanism-based inhibitors. Substituting Ser130 with glycine in the inhibitor-resistant TEM (IRT) mutant TEM-76 (S130G) prevents the irreversible cross-linking step. Since the completely conserved Ser130 is thought to transfer a proton important for catalysis, its substitution might be hypothesized to result in a nonfunctional enzyme; this is clearly not the case. To investigate how TEM-76 remains active, its structure was determined by X-ray crystallography to 1.40 A resolution. A new water molecule (Wat1023) is observed in the active site, with two configurations located 1.1 and 1.3 A from the missing Ser130 Ogamma; this water molecule likely replaces the Ser130 side-chain hydroxyl in substrate hydrolysis. Intriguingly, this same water molecule is seen in the IRT TEM-32 (M69I/M182T), where Ser130 has moved significantly. TEM-76 shares other structural similarities with various IRTs; like TEM-30 (R244S) and TEM-84 (N276D), the water molecule activating clavulanate for cross-linking (Wat1614) is disordered (in TEM-30 it is actually absent). As expected, TEM-76 has decreased kinetic activity, likely due to the replacement of the Ser130 side-chain hydroxyl with a water molecule. In contrast to the recently determined structure of the S130G mutant in the related SHV-1 beta-lactamase, in TEM-76 the key hydrolytic water (Wat1561) is still present. The conservation of similar accommodations among IRT mutants suggests that resistance arises from common mechanisms, despite the disparate locations of the various substitutions. 相似文献
118.
Lawren VandeVrede Ramy Abdelhamid Zhihui Qin Jaewoo Choi Sujeewa Piyankarage Jia Luo John Larson Brian M. Bennett Gregory R. J. Thatcher 《PloS one》2013,8(8)
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3rd generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer''s transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events. 相似文献
119.
Matts RL Brandt GE Lu Y Dixit A Mollapour M Wang S Donnelly AC Neckers L Verkhivker G Blagg BS 《Bioorganic & medicinal chemistry》2011,19(1):684-692
Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA. 相似文献
120.
Michael R. Kierny Thomas D. Cunningham Rachida A. Bouhenni Deepak P. Edward Brian K. Kay 《PloS one》2015,10(4)
Candidate biomarkers, indicative of disease or injury, are beginning to overwhelm the process of validation through immunological means. Recombinant antibodies developed through phage-display offer an alternative means of generating monoclonal antibodies faster than traditional immunization of animals. Peptide segments of putative biomarkers of laser induced injury in the rabbit, discovered through mass spectrometry, were used as targets for a selection against a library of phage-displayed human single-chain variable fragment (scFv) antibodies. Highly specific antibodies were isolated to four of these unique peptide sequences. One antibody against the retinal protein, Guanine Nucleotide-Binding Protein Beta 5 (GBB5), had a dissociation constant ~300 nM and recognized the full-length endogenous protein in retinal homogenates of three different animal species by western blot. Alanine scanning of the peptide target identified three charged and one hydrophobic amino acid as the critical binding residues for two different scFvs. To enhance the utility of the reagent, one scFv was dimerized through a Fragment-crystallizable hinge region (i.e., Fc) and expressed in HEK-293 cells. This dimeric reagent yielded a 25-fold lower detection limit in western blots. 相似文献