首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19045篇
  免费   1700篇
  国内免费   8篇
  2023年   59篇
  2022年   119篇
  2021年   343篇
  2020年   194篇
  2019年   265篇
  2018年   369篇
  2017年   301篇
  2016年   426篇
  2015年   842篇
  2014年   894篇
  2013年   1105篇
  2012年   1539篇
  2011年   1514篇
  2010年   926篇
  2009年   893篇
  2008年   1227篇
  2007年   1236篇
  2006年   1127篇
  2005年   1149篇
  2004年   1012篇
  2003年   954篇
  2002年   918篇
  2001年   198篇
  2000年   154篇
  1999年   194篇
  1998年   273篇
  1997年   167篇
  1996年   148篇
  1995年   144篇
  1994年   129篇
  1993年   120篇
  1992年   102篇
  1991年   85篇
  1990年   97篇
  1989年   94篇
  1988年   87篇
  1987年   64篇
  1986年   83篇
  1985年   82篇
  1984年   107篇
  1983年   81篇
  1982年   91篇
  1981年   109篇
  1980年   91篇
  1979年   64篇
  1978年   67篇
  1977年   57篇
  1976年   41篇
  1975年   41篇
  1974年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The class I major histocompatibility (MHC) molecule is a heterotrimer composed of a heavy chain, the small subunit beta(2)-microglobulin (beta(2)m), and a peptide. Fluorescence anisotropy has been used to assay the interaction of a labeled peptide with a recombinant, soluble form of the class I MHC HLA-A2. Consistent with earlier work, peptide binding is shown to be a two-step process limited by a conformational rearrangement in the heavy chain/beta(2)m heterodimer. However, we identify two pathways for peptide dissociation from the heterotrimer: (1) initial peptide dissociation leaving a heavy chain/beta(2)m heterodimer and (2) initial dissociation of beta(2)m, followed by peptide dissociation from the heavy chain. Eyring analyses of rate constants measured as a function of temperature permit for the first time a complete thermodynamic characterization of peptide binding. We find that in this case peptide binding is mostly entropically driven, likely reflecting the hydrophobic character of the peptide binding groove and the peptide anchor residues. Thermodynamic and kinetic analyses of peptide-MHC interactions as performed here may be of practical use in the engineering of peptides with desired binding properties and will aid in the interpretation of the effects of MHC and peptide substitutions on peptide binding and T cell reactivity. Finally, our data suggest a role for beta(2)m in dampening conformational dynamics in the heavy chain. Remaining conformational variability in the heavy chain once beta(2)m has bound may be a mechanism to promote promiscuity in peptide binding.  相似文献   
992.
The C-terminal receptor-binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has been the target for the design of a vaccine effective against P. aeruginosa infections. We have recently cloned and expressed a (15)N-labeled PAK pilin peptide spanning residues 128-144 of the PAK pilin protein. The peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around a central Ile(138)-Pro(139) peptide bond. The trans isomer adopts two well-defined turns in solution, a type I beta-turn spanning Asp(134)-Glu-Gln-Phe(137) and a type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142). The cis isomer adopts only one well-defined type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142) but displays evidence of a less ordered turn spanning Asp(132)-Gln-Asp-Glu(135). These turns have been implicated in cross-reactive antibody recognition. (15)N NMR relaxation experiments of the (15)N-labeled recombinant PAK pilin peptide in complex with an Fab fragment of a cross-reactive monoclonal antibody, PAK-13, raised against the intact PAK pilus, were performed in order to probe for changes in the mobilities and dynamics of the peptide backbone as a result of antibody binding. The major results of these studies are as follows: binding of Fab leads to the preferential ordering of the first turn over the second turn in each isomer, binding of Fab partially stabilizes peptide backbone regions undergoing slow (microsecond to millisecond) exchange-related motions, and binding of Fab leads to a greater loss in backbone conformational entropy at pH 7.2 versus pH 4.5. The biological implications of these results will be discussed in relation to the role that fast and slow backbone motions play in PAK pilin peptide immunogenicity and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   
993.
By use of a capillary electrophoresis-based procedure, it is possible to measure the activity of individual molecules of beta-galactosidase. Molecules from the crystallized enzyme as well as the original enzyme preparation used to grow the crystals both displayed a range of activity of 20-fold or greater. beta-Galactosidase molecules obtained from two different crystals had indistinguishable activity distributions of 31,600 +/- 1100 and 31,800 +/- 1100 reactions min(-1) (enzyme molecule)(-1). This activity was found to be significantly different from that of the enzyme used to grow the crystals, which showed an activity distribution of 38,500 +/- 900 reactions min(-1) (enzyme molecule)(-1).  相似文献   
994.
The Ca(2+) sensitivity of cardiac contractile element is reduced at lower temperatures, in contrast to that in fast skeletal muscle. Cardiac troponin C (cTnC) replacement in mammalian skinned fibers showed that TnC plays a critical role in this phenomenon (Harrison and Bers, (1990), Am. J. Physiol. 258, C282-8). Understanding the differences in affinity and structure between cTnCs from cold-adapted ectothermic species and mammals may bring new insights into how the different isoforms provide different resistances to cold. We followed the Ca(2+) titration to the regulatory domain of rainbow trout cTnC by NMR (wild type at 7 and 30 degrees C and F27W mutant at 30 degrees C) and fluorescence (F27W mutant, at 7 and 30 degrees C) spectroscopies. Using NMR spectroscopy, we detected Ca(2+) binding to site I of trout cTnC at high concentrations. This places trout cTnC between mammalian cTnC, in which site I is completely inactive, and skeletal TnC, in which site I binds Ca(2+) during muscle activation, and which is not as much affected by lower temperatures. This binding was seen both at 7 and at 30 degrees C. Despite the low Ca(2+) affinity, trout TnC site I may increase the likelihood of an opening of the regulatory domain, thus increasing the affinity for TnI. This way, it may be responsible for trout cTnC's capacity to function at lower temperatures.  相似文献   
995.
Understanding the specificity of Src homology 2 (SH2) domains is important because of their critical role in cell signaling. Previous genetic analysis has characterized mutants of the N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K). The P395S mutant exhibits a specificity for phosphopeptide binding different from that of the wild-type SH2. The P395S mutant has an increased affinity for the platelet-derived growth factor receptor (PDGFr) compared to polyomavirus middle T antigen (MT). Solution structures of the P395S mutant of the p85 N-SH2 alone and complexed to a PDGFr phosphopeptide were determined to explain the change in specificity. Chemical shift perturbations caused by different peptides were compared for mutant and wild-type structures. The results show that the single P395S mutation has broad effects on the structure. Furthermore, they provide a rationale for the observed changes in binding preference.  相似文献   
996.
Many proteins that are destined to reside within the lumen of the peroxisome contain the peroxisomal targeting signal-1 (PTS1), a C-terminal tripeptide approximating the consensus sequence -Ser-Lys-Leu-COO(-). The PTS1 is recognized by the tetratricopeptide repeat (TPR) domains of PEX5, a cytosolic receptor that cycles between the cytoplasm and the peroxisome. To gain insight into the energetics of PTS1 binding specificity and to correlate these with features from the recently determined structure of a PEX5:PTS1 complex, we used a fluorescence-based binding assay that enables the quantitation of the dissociation constants for PTS1-containing peptide complexes with the TPR region of human PEX5. Through application of this assay to a collection of pentapeptides containing different C-terminal tripeptide sequences, including both natural and unnatural amino acids, the thermodynamic effects of sequence variation were examined. PTS1 variants that correspond to known functional targeting signals bind to the PEX5 fragment with a change in the standard binding free energy within 1.8 kcal mol(-1) of that corresponding to the peptide ending with -Ser-Lys-Leu-COO(-). The results suggest that a binding energy threshold may determine the functionality of PTS1 sequences.  相似文献   
997.
Huang H  Norledge BV  Liu C  Olson AJ  Edgington TS 《Biochemistry》2003,42(36):10619-10626
Tissue factor (TF), the receptor and cofactor for factor VIIa (VIIa) for cellular initiation of the coagulation protease cascade, drives thrombogenesis, inflammation, tumor cell metastasis, and the lethality of severe sepsis. To identify TF surface loci that can selectively inhibit substrate zymogen association and activation, TF(1-218), the extracellular domain, was used as the target for the phage display search. This resulted in selection of 59 clones from a phage gpVIII surface protein-expressed library of constrained combinatorial peptides. Of these, one encoding the peptide Glu-Cys-Leu-Arg-Ser-Val-Val-Thr-Cys on gpVIII most avidly bound TF(1-218), as did the synthetic peptide. Inhibition of binding was selective with an IC(50) of 30 nM for proteolytic activation of factor X by the TF(1-218)-VIIa complex. In contrast, there was no inhibition of factor IX activation. The selective inhibition of only factor X association with TF(1-218) will spare the intrinsic hemostatic pathway while attenuating the extrinsic thrombogenic pathway. This and related peptidyl structures provide the potential for the more precise identification of TF surface loci that mediate selective functional properties of the protein as well as a structural basis for the design of novel molecules for selectively attenuating initiation of the extrinsic limb of the coagulation protease cascade and other functions of TF.  相似文献   
998.
Payne JC  Rous BW  Tenderholt AL  Godwin HA 《Biochemistry》2003,42(48):14214-14224
Zinc binding to the two Cys(4) sites present in the DNA-binding domain (DBD) of nuclear hormone receptor proteins is required for proper folding of the domain and for protein activity. By utilizing Co(2+) as a spectroscopic probe, we have characterized the metal-binding properties of the two Cys(4) structural zinc-binding sites found in the DBD of human estrogen receptor alpha (hERalpha-DBD) and rat glucocorticoid receptor (GR-DBD). The binding affinity of Co(2+) to the two proteins was determined relative to the binding affinity of Co(2+) to the zinc finger consensus peptide, CP-1. Using the known dissociation constant of Co(2+) from CP-1, the dissociation constants of cobalt from hERalpha-DBD were calculated: K(d1)(Co) = 2.2 (+/- 1.0) x 10(-7) M and K(d2)(Co) = 6.1 (+/- 1.5) x 10(-7) M. Similarly, the dissociation constants of Co(2+) from GR-DBD were calculated: K(d1)(Co) = 4.1 (+/- 0.6) x 10(-7) M and K(d2)(Co) = 1.7 (+/- 0.3) x 10(-7) M. Metal-binding studies conducted in which Zn(2+) displaces Co(2+) from the metal-binding sites of hERalpha-DBD and GR-DBD indicate that Zn(2+) binds to each of the Cys(4) metal-binding sites approximately 3 orders of magnitude more tightly than Co(2+) does: the stoichiometric dissociation constants are K(d1)(Zn) = 1 (+/- 1) x 10(-10) M and K(d2)(Zn) = 5 (+/- 1) x 10(-10) M for hERalpha-DBD and K(d1)(Zn) = 2 (+/- 1) x 10(-10) M and K(d2)(Zn) = 3 (+/- 1) x 10(-10) M for GR-DBD. These affinities are comparable to those observed for most other naturally occurring structural zinc-binding sites. In contrast to the recent prediction by Low et. al. that zinc binding in these systems should be cooperative [Low, L. Y., Hernández, H., Robinson, C. V., O'Brien, R., Grossmann, J. G., Ladbury, J. E., and Luisi, B. (2002) J. Mol. Biol. 319, 87-106], these data suggest that the zincs that bind to the two sites in the DBDs of hERalpha-DBD and GR-DBD do not interact.  相似文献   
999.
A panel of six na?ve 14-residue random peptide libraries displayed polyvalently on M13 phage was pooled and sorted against human leukemia inhibitory factor (LIF). After four rounds of selection, a single large family of peptides with the consensus sequence XCXXXXG(A/S)(D/E)(W/F)WXCF was found to bind specifically to LIF. Peptides within this family did not bind related members of the interleukin-6 family of cytokines, nor to murine LIF that has 80% sequence identity with human LIF. A representative peptide from this family was synthesized and found to bind to LIF with an affinity of approximately 300 nM. The phage-displayed form of this peptide was able to compete with the LIF receptor alpha chain (LIFR) for binding to LIF; however, the free synthetic peptide was unable to inhibit LIF-LIFR binding or inhibit LIF bioactivity in vitro. Using a panel of human/murine chimeric LIF molecules, the peptide-binding site on LIF was mapped to a groove located between the B and the C helices of the LIF structure, which is distinct from the surfaces involved in binding to receptor. To mimic the effect of the phage particle and convert the free peptide into an antagonist of LIFR binding, a 40 kDa poly(ethylene glycol) (PEG) moiety was conjugated to the synthetic LIF-binding peptide. This PEG-peptide conjugate was found to be both an antagonist of LIF-LIFR binding and of LIF signaling in engineered Ba/F3 cells expressing LIFR and the gp130 coreceptor.  相似文献   
1000.
Bovine pulmonary surfactant protein C (SP-C) is a hydrophobic, alpha-helical membrane-associated lipoprotein in which cysteines C4 and C5 are acylated with palmitoyl chains. Recently, it has been found that the alpha-helix form of SP-C is metastable, and under certain circumstances may transform from an alpha-helix to a beta-strand conformation that resembles amyloid fibrils. This transformation is accelerated when the protein is in its deacylated form (dSP-C). We have used infrared spectroscopy to study the structure of dSP-C in solution and at membrane interfaces. Our results show that dSP-C transforms from an alpha-helical to a beta-type amyloid fibril structure via a pH-dependent mechanism. In solution at low pH, dSP-C is alpha-helical in nature, but converts to an amyloid fibril structure composed of short beta-strands or beta-hairpins at neutral pH. The alpha-helix structure of dSP-C is fully recoverable from the amyloid beta-structure when the pH is once again lowered. Attenuated total reflectance infrared spectroscopy of lipid-protein monomolecular films showed that the fibril beta-form of dSP-C is not surface-associated at the air-water interface. In addition, the lipid-associated alpha-helix form of dSP-C is only retained at the surface at low surface pressures and dissociates from the membrane at higher surface pressures. In situ polarization modulation infrared spectroscopy of protein and lipid-protein monolayers at the air-water interface confirmed that the residual dSP-C helix conformation observed in the attenuated total reflectance infrared spectra of transferred films is randomly or isotropically oriented before exclusion from the membrane interface. This work identifies pH as one of the mechanistic causes of amyloid fibril formation for dSP-C, and a possible contributor to the pathogenesis of pulmonary alveolar proteinosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号