首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19239篇
  免费   1661篇
  国内免费   4篇
  2023年   60篇
  2022年   139篇
  2021年   324篇
  2020年   176篇
  2019年   247篇
  2018年   340篇
  2017年   291篇
  2016年   421篇
  2015年   816篇
  2014年   869篇
  2013年   1098篇
  2012年   1518篇
  2011年   1494篇
  2010年   910篇
  2009年   892篇
  2008年   1230篇
  2007年   1245篇
  2006年   1147篇
  2005年   1146篇
  2004年   1023篇
  2003年   947篇
  2002年   938篇
  2001年   222篇
  2000年   164篇
  1999年   209篇
  1998年   282篇
  1997年   169篇
  1996年   158篇
  1995年   147篇
  1994年   138篇
  1993年   126篇
  1992年   119篇
  1991年   116篇
  1990年   122篇
  1989年   107篇
  1988年   103篇
  1987年   76篇
  1986年   90篇
  1985年   85篇
  1984年   112篇
  1983年   82篇
  1982年   95篇
  1981年   111篇
  1980年   94篇
  1979年   65篇
  1978年   71篇
  1977年   57篇
  1976年   47篇
  1974年   66篇
  1973年   46篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Mammalian dolichol-phosphate-mannose (DPM) synthase consists of three subunits, DPM1, DPM2, and DPM3. Lec15.1 Chinese hamster ovary cells are deficient in DPM synthase activity. The present paper reports that DPM1 cDNA from wild type and Lec15.1 CHO cells were found to be identical, and transfection with CHO DPM1 cDNA did not reverse the Lec15.1 phenotype. Neither did a chimeric cDNA containing the complete hamster DPM1 open reading frame fused to the Saccharomyces cerevisiae DPM1 C-terminal transmembrane domain. In contrast, Lec15.1 cells were found to have a single point mutation G29A within the coding region of the DPM2 gene, resulting in a glycine to glutamic acid change in amino acid residue 10 of the peptide. Moreover, mutant DPM2 cDNA expressed a drastically reduced amount of DPM2 protein and poorly corrects the Lec15.1 cell phenotype when compared with wild type CHO DPM2 cDNA (G(29) form).  相似文献   
992.
Mammalian dolichol-phosphate-mannose (DPM) synthase has three subunits, DPM1, DPM2, and DPM3. In this report, an analysis of the gene and cDNAs of hamster DPM2 is presented. The CHO DPM2 gene has two special features. First, the initiation codon ATG is separated from the remainder of the coding region by intron sequences. Second, within these intron sequences the DPM2 gene contains an adjacent 3' splice site (acceptor) and a 5' splice site (donor), suggestive of a deleted exon between the first and second codons. In fact, these sites overlap by four nucleotides (nt) of AGGT. Splicing intermediates using both of these alternative splice sites were observed. This latter feature appears unique and is particularly unusual considering the relatively small size of the gene (2.7 kb) and of introns a (123 bp) and b (152 bp).  相似文献   
993.
The class I major histocompatibility (MHC) molecule is a heterotrimer composed of a heavy chain, the small subunit beta(2)-microglobulin (beta(2)m), and a peptide. Fluorescence anisotropy has been used to assay the interaction of a labeled peptide with a recombinant, soluble form of the class I MHC HLA-A2. Consistent with earlier work, peptide binding is shown to be a two-step process limited by a conformational rearrangement in the heavy chain/beta(2)m heterodimer. However, we identify two pathways for peptide dissociation from the heterotrimer: (1) initial peptide dissociation leaving a heavy chain/beta(2)m heterodimer and (2) initial dissociation of beta(2)m, followed by peptide dissociation from the heavy chain. Eyring analyses of rate constants measured as a function of temperature permit for the first time a complete thermodynamic characterization of peptide binding. We find that in this case peptide binding is mostly entropically driven, likely reflecting the hydrophobic character of the peptide binding groove and the peptide anchor residues. Thermodynamic and kinetic analyses of peptide-MHC interactions as performed here may be of practical use in the engineering of peptides with desired binding properties and will aid in the interpretation of the effects of MHC and peptide substitutions on peptide binding and T cell reactivity. Finally, our data suggest a role for beta(2)m in dampening conformational dynamics in the heavy chain. Remaining conformational variability in the heavy chain once beta(2)m has bound may be a mechanism to promote promiscuity in peptide binding.  相似文献   
994.
The C-terminal receptor-binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has been the target for the design of a vaccine effective against P. aeruginosa infections. We have recently cloned and expressed a (15)N-labeled PAK pilin peptide spanning residues 128-144 of the PAK pilin protein. The peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around a central Ile(138)-Pro(139) peptide bond. The trans isomer adopts two well-defined turns in solution, a type I beta-turn spanning Asp(134)-Glu-Gln-Phe(137) and a type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142). The cis isomer adopts only one well-defined type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142) but displays evidence of a less ordered turn spanning Asp(132)-Gln-Asp-Glu(135). These turns have been implicated in cross-reactive antibody recognition. (15)N NMR relaxation experiments of the (15)N-labeled recombinant PAK pilin peptide in complex with an Fab fragment of a cross-reactive monoclonal antibody, PAK-13, raised against the intact PAK pilus, were performed in order to probe for changes in the mobilities and dynamics of the peptide backbone as a result of antibody binding. The major results of these studies are as follows: binding of Fab leads to the preferential ordering of the first turn over the second turn in each isomer, binding of Fab partially stabilizes peptide backbone regions undergoing slow (microsecond to millisecond) exchange-related motions, and binding of Fab leads to a greater loss in backbone conformational entropy at pH 7.2 versus pH 4.5. The biological implications of these results will be discussed in relation to the role that fast and slow backbone motions play in PAK pilin peptide immunogenicity and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   
995.
By use of a capillary electrophoresis-based procedure, it is possible to measure the activity of individual molecules of beta-galactosidase. Molecules from the crystallized enzyme as well as the original enzyme preparation used to grow the crystals both displayed a range of activity of 20-fold or greater. beta-Galactosidase molecules obtained from two different crystals had indistinguishable activity distributions of 31,600 +/- 1100 and 31,800 +/- 1100 reactions min(-1) (enzyme molecule)(-1). This activity was found to be significantly different from that of the enzyme used to grow the crystals, which showed an activity distribution of 38,500 +/- 900 reactions min(-1) (enzyme molecule)(-1).  相似文献   
996.
The Ca(2+) sensitivity of cardiac contractile element is reduced at lower temperatures, in contrast to that in fast skeletal muscle. Cardiac troponin C (cTnC) replacement in mammalian skinned fibers showed that TnC plays a critical role in this phenomenon (Harrison and Bers, (1990), Am. J. Physiol. 258, C282-8). Understanding the differences in affinity and structure between cTnCs from cold-adapted ectothermic species and mammals may bring new insights into how the different isoforms provide different resistances to cold. We followed the Ca(2+) titration to the regulatory domain of rainbow trout cTnC by NMR (wild type at 7 and 30 degrees C and F27W mutant at 30 degrees C) and fluorescence (F27W mutant, at 7 and 30 degrees C) spectroscopies. Using NMR spectroscopy, we detected Ca(2+) binding to site I of trout cTnC at high concentrations. This places trout cTnC between mammalian cTnC, in which site I is completely inactive, and skeletal TnC, in which site I binds Ca(2+) during muscle activation, and which is not as much affected by lower temperatures. This binding was seen both at 7 and at 30 degrees C. Despite the low Ca(2+) affinity, trout TnC site I may increase the likelihood of an opening of the regulatory domain, thus increasing the affinity for TnI. This way, it may be responsible for trout cTnC's capacity to function at lower temperatures.  相似文献   
997.
Understanding the specificity of Src homology 2 (SH2) domains is important because of their critical role in cell signaling. Previous genetic analysis has characterized mutants of the N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K). The P395S mutant exhibits a specificity for phosphopeptide binding different from that of the wild-type SH2. The P395S mutant has an increased affinity for the platelet-derived growth factor receptor (PDGFr) compared to polyomavirus middle T antigen (MT). Solution structures of the P395S mutant of the p85 N-SH2 alone and complexed to a PDGFr phosphopeptide were determined to explain the change in specificity. Chemical shift perturbations caused by different peptides were compared for mutant and wild-type structures. The results show that the single P395S mutation has broad effects on the structure. Furthermore, they provide a rationale for the observed changes in binding preference.  相似文献   
998.
Many proteins that are destined to reside within the lumen of the peroxisome contain the peroxisomal targeting signal-1 (PTS1), a C-terminal tripeptide approximating the consensus sequence -Ser-Lys-Leu-COO(-). The PTS1 is recognized by the tetratricopeptide repeat (TPR) domains of PEX5, a cytosolic receptor that cycles between the cytoplasm and the peroxisome. To gain insight into the energetics of PTS1 binding specificity and to correlate these with features from the recently determined structure of a PEX5:PTS1 complex, we used a fluorescence-based binding assay that enables the quantitation of the dissociation constants for PTS1-containing peptide complexes with the TPR region of human PEX5. Through application of this assay to a collection of pentapeptides containing different C-terminal tripeptide sequences, including both natural and unnatural amino acids, the thermodynamic effects of sequence variation were examined. PTS1 variants that correspond to known functional targeting signals bind to the PEX5 fragment with a change in the standard binding free energy within 1.8 kcal mol(-1) of that corresponding to the peptide ending with -Ser-Lys-Leu-COO(-). The results suggest that a binding energy threshold may determine the functionality of PTS1 sequences.  相似文献   
999.
Huang H  Norledge BV  Liu C  Olson AJ  Edgington TS 《Biochemistry》2003,42(36):10619-10626
Tissue factor (TF), the receptor and cofactor for factor VIIa (VIIa) for cellular initiation of the coagulation protease cascade, drives thrombogenesis, inflammation, tumor cell metastasis, and the lethality of severe sepsis. To identify TF surface loci that can selectively inhibit substrate zymogen association and activation, TF(1-218), the extracellular domain, was used as the target for the phage display search. This resulted in selection of 59 clones from a phage gpVIII surface protein-expressed library of constrained combinatorial peptides. Of these, one encoding the peptide Glu-Cys-Leu-Arg-Ser-Val-Val-Thr-Cys on gpVIII most avidly bound TF(1-218), as did the synthetic peptide. Inhibition of binding was selective with an IC(50) of 30 nM for proteolytic activation of factor X by the TF(1-218)-VIIa complex. In contrast, there was no inhibition of factor IX activation. The selective inhibition of only factor X association with TF(1-218) will spare the intrinsic hemostatic pathway while attenuating the extrinsic thrombogenic pathway. This and related peptidyl structures provide the potential for the more precise identification of TF surface loci that mediate selective functional properties of the protein as well as a structural basis for the design of novel molecules for selectively attenuating initiation of the extrinsic limb of the coagulation protease cascade and other functions of TF.  相似文献   
1000.
Payne JC  Rous BW  Tenderholt AL  Godwin HA 《Biochemistry》2003,42(48):14214-14224
Zinc binding to the two Cys(4) sites present in the DNA-binding domain (DBD) of nuclear hormone receptor proteins is required for proper folding of the domain and for protein activity. By utilizing Co(2+) as a spectroscopic probe, we have characterized the metal-binding properties of the two Cys(4) structural zinc-binding sites found in the DBD of human estrogen receptor alpha (hERalpha-DBD) and rat glucocorticoid receptor (GR-DBD). The binding affinity of Co(2+) to the two proteins was determined relative to the binding affinity of Co(2+) to the zinc finger consensus peptide, CP-1. Using the known dissociation constant of Co(2+) from CP-1, the dissociation constants of cobalt from hERalpha-DBD were calculated: K(d1)(Co) = 2.2 (+/- 1.0) x 10(-7) M and K(d2)(Co) = 6.1 (+/- 1.5) x 10(-7) M. Similarly, the dissociation constants of Co(2+) from GR-DBD were calculated: K(d1)(Co) = 4.1 (+/- 0.6) x 10(-7) M and K(d2)(Co) = 1.7 (+/- 0.3) x 10(-7) M. Metal-binding studies conducted in which Zn(2+) displaces Co(2+) from the metal-binding sites of hERalpha-DBD and GR-DBD indicate that Zn(2+) binds to each of the Cys(4) metal-binding sites approximately 3 orders of magnitude more tightly than Co(2+) does: the stoichiometric dissociation constants are K(d1)(Zn) = 1 (+/- 1) x 10(-10) M and K(d2)(Zn) = 5 (+/- 1) x 10(-10) M for hERalpha-DBD and K(d1)(Zn) = 2 (+/- 1) x 10(-10) M and K(d2)(Zn) = 3 (+/- 1) x 10(-10) M for GR-DBD. These affinities are comparable to those observed for most other naturally occurring structural zinc-binding sites. In contrast to the recent prediction by Low et. al. that zinc binding in these systems should be cooperative [Low, L. Y., Hernández, H., Robinson, C. V., O'Brien, R., Grossmann, J. G., Ladbury, J. E., and Luisi, B. (2002) J. Mol. Biol. 319, 87-106], these data suggest that the zincs that bind to the two sites in the DBDs of hERalpha-DBD and GR-DBD do not interact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号