首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18458篇
  免费   1558篇
  国内免费   4篇
  20020篇
  2023年   65篇
  2022年   151篇
  2021年   318篇
  2020年   175篇
  2019年   231篇
  2018年   319篇
  2017年   280篇
  2016年   404篇
  2015年   794篇
  2014年   848篇
  2013年   1066篇
  2012年   1487篇
  2011年   1454篇
  2010年   877篇
  2009年   865篇
  2008年   1197篇
  2007年   1215篇
  2006年   1105篇
  2005年   1125篇
  2004年   992篇
  2003年   930篇
  2002年   904篇
  2001年   193篇
  2000年   143篇
  1999年   190篇
  1998年   273篇
  1997年   162篇
  1996年   145篇
  1995年   143篇
  1994年   126篇
  1993年   115篇
  1992年   100篇
  1991年   83篇
  1990年   91篇
  1989年   90篇
  1988年   80篇
  1987年   58篇
  1986年   78篇
  1985年   83篇
  1984年   100篇
  1983年   77篇
  1982年   87篇
  1981年   106篇
  1980年   89篇
  1979年   56篇
  1978年   66篇
  1977年   55篇
  1976年   38篇
  1974年   58篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Protein L is a multi domain cell wall constituent of certain strains of Peptostreptococcus magnus which binds to the variable domain of immunoglobulin κ-light chains. A single immunoglobulin-binding domain of Mr = 9000 from this protein has been isolated and crystallized. The crystals are of space group P42212, with cell dimensions a = b = 66.9 Å, c = 68.3 Å, and diffract to at least 2.2 Å resolution. The asymmetric unit of the crystal contains two molecules of the protein L domain, related by a noncrystallographic 2-fold axis, as revealed by a self-rotation function calculated with native diffraction data. © 1995 Wiley-Liss, Inc.  相似文献   
132.
A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.Definitions for model parameters RX halogenated aliphatic substrate - E-M n reduced dehalogenase - E-M n+2 oxidized dehalogenase - [E-M n ] steady-state concentration of the reduced dehalogenase (moles of reduced dehalogenase per unit volume) - [E-M n+2] steady-state concentration of the oxidized dehalogenase (moles of reduced dehalogenase per unit volume) - DH2 primary exogenous electron-donor substrate - A primary exogenous electron-acceptor substrate - A2 second primary exogenous electron-acceptor substrate - X biomass concentration (biomass per unit volume) - f fraction of biomass that is comprised of the dehalogenase (moles of dehalogenase per unit biomass) - stoichiometric coefficient for the reductive dehalogenation reaction (moles of dehalogenase oxidized per mole of halogenated substrate reduced) - stoichiometric coefficient for oxidation of the primary electron donor (moles of dehalogenase reduced per mole of donor oxidized) - stoichiometric coefficient for oxidation of the endogenous electron donor (moles of dehalogenase reduced per unit biomass oxidized) - stoichiometric coefficient for reduction of the primary electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - stoichiometric coefficient for reduction of the second electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - r RX rate of the reductive dehalogenation reaction (moles of halogenated substrate reduced per unit volume per unit time) - r d1 rate of oxidation of the primary exogenous electron donor (moles of donor oxidized per unit volume per unit time) - r d2 rate of oxidation of the endogenous electron donor (biomass oxidized per unit volume per unit time) - r a1 rate of reduction of the primary exogenous electron acceptor (moles of acceptor reduced per unit volume per unit time) - r a2 rate of reduction of the second primary electron acceptor (moles of acceptor reduced per unit volume per unit time) - k RX mixed second-order rate coefficient for the reductive dehalogenation reaction (volume per mole dehalogenase per unit time) - k d1 mixed-second-order rate coefficient for oxidation of the primary electron donor (volume per mole dehalogenase per unit time) - k d2 mixed-second-order rate coefficient for oxidation of the endogenous electron donor (volume per mole dehalogenase per unit time) - b first-order biomass decay coefficient (biomass oxidized per unit biomass per unit time) - k a1 mixed-second-order rate coefficient for reduction of the primary electron acceptor (volume per mole dehalogenase per unit time) - k a2 mixed-second-order rate coefficient for reduction of the second primary electron acceptor (volume per mole dehalogenase per unit time) - q m,ap apparent maximum specific rate of reductive dehalogenation (moles of RX per unit biomass per unit time) - K ap apparent half-saturation concentration for the halogenated aliphatic substrate (moles of RX per unit volume) - k ap apparent pseudo-first-order rate coefficient for reductive dehalogenation (volume per unit biomass per unit time)  相似文献   
133.
The Zinnia mesophyll cell system consists of isolated leaf mesophyll cells in culture that can be induced, by auxin and cytokinin, to transdifferentiate semi-synchronously into tracheary elements (TEs). This system has been used to establish the precise time point at which the TE cell fate becomes determined, and then changes have been looked for in cell-wall composition and architecture that are associated with the establishment of competence, determination, and differentiation with the transition from primary to secondary cell wall formation. At very early stages in this time course, changes in the repertoire of proteins and polysaccharides both in the cell wall and secreted into the culture medium were found. Changes in the secretion of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGPs) have been detected using the monoclonal antibodies JIM 7, CCRC-M1 and JIM 13, that recognize these three classes of cell-wall molecule, respectively. Twenty-four hours before secondary thickenings are visible, an AGP is present in the primary walls of a subpopulation of cells, and is secreted into the culture medium. This molecule is present in the secondary thickenings of mature TEs but not in their surrounding primary walls. Methyl-esterified pectic polysaccharides are present in all cell walls and are secreted into the culture medium throughout the time course of differentiation, though at an increased rate in inductive medium. However, sugar and linkage analysis of culture media shows that a relatively unbranched rhamnogalacturonan is enriched in inductive medium around the time of determination and increases rapidly in concentration. The amount of fucosylated xyloglucan in cell walls increases during the time course, but appears in inductive medium 24 h earlier than in control medium and may have a subtly different structure. The fucose-containing epitope on the xyloglucan disappears abruptly and entirely from inductive medium 6 h before any secondary thickenings are visible in the cells. The disappearance of the epitope is correlated with secretion of several hydrolytic enzyme activities. In Zinnia leaves, the mesophyll cell walls contain neither the fucosylated xyloglucan nor the AGP, although methylesterified pectin is present. All three epitopes are expressed in the vascular bundles, and the AGP is specifically localized in the xylem cells. Fucosylated xyloglucan is also present in the epidermal tissue, and the AGP is present in guard cells. The dynamic behaviour of these specific cell-wall molecules is tightly correlated with differentiation events in vitro, and can be clearly distinguished from the production of new wall material found in expanding and elongating cells. The precise timing of the appearance and disappearance of these proteins and polysaccharides compared with the point of cell-fate determination provides us with a series of cell-surface markers for cell states at very early times in the transdifferentiation pathway.  相似文献   
134.
135.
Type II antifreeze proteins (AFP), which inhibit the growth of seed ice crystals in the blood of certain fishes (sea raven, herring, and smelt), are the largest known fish AFPs and the only class for which detailed structural information is not yet available. However, a sequence homology has been recognized between these proteins and the carbohydrate recognition domain of C-type lectins. The structure of this domain from rat mannose-binding protein (MBP-A) has been solved by X-ray crystallography (Weis WI, Drickamer K, Hendrickson WA, 1992, Nature 360:127-134) and provided the coordinates for constructing the three-dimensional model of the 129-amino acid Type II AFP from sea raven, to which it shows 19% sequence identity. Multiple sequence alignments between Type II AFPs, pancreatic stone protein, MBP-A, and as many as 50 carbohydrate-recognition domain sequences from various lectins were performed to determine reliably aligned sequence regions. Successive molecular dynamics and energy minimization calculations were used to relax bond lengths and angles and to identify flexible regions. The derived structure contains two alpha-helices, two beta-sheets, and a high proportion of amino acids in loops and turns. The model is in good agreement with preliminary NMR spectroscopic analyses. It explains the observed differences in calcium binding between sea raven Type II AFP and MBP-A. Furthermore, the model proposes the formation of five disulfide bridges between Cys 7 and Cys 18, Cys 35 and Cys 125, Cys 69 and Cys 100, Cys 89 and Cys 111, and Cys 101 and Cys 117.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
136.
A new approach to the pre-column derivatization and analysis of amino acids is described. The method is based upon formation of a phenylthiocarbamyl derivative of the amino acids. The derivatization method is rapid, efficient, sensitive, and specific for the analysis of primary and secondary amino acids in protein hydorlyzates. The liquid chromatographic system allows for the rapid, bonded-phase separation with ultraviolet detection of the common amino acids with 12-min analysis time and a 1-pmol sensitivity.  相似文献   
137.
A discrete, environmentally coupled, size-specific model of microbial population dynamics in continuous culture is presented. It is mathematically simpler than other models based on similar assumptions and lends itself to numerical and analytic solutions. It displays several phenomena which have been reported in the experimental literature but which are not well understood; specifically, a loose relationship between biomass and numbers (i.e., a time lag between mass growth and cell division) and a critical damping of biomass while numbers continue to oscillate. In addition, the model provides several new predictions: The stable biomass distribution is independent of the environmental factors considered in the model and uniformly distributes the biomass among the size classes. The rate of approach to stability and the frequency of waves through the size distributions are a function of the flow rate and the variance in rate of growth and size at division. The model should provide a useful basis for studying the effects of size specificity on the dynamics of microbial populations cultured in chemostats.  相似文献   
138.
The light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37) was inhibited in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Decreases in the velocity and magnitude of light activation correlated with the overall reduction in CO2 fixation rates. Responses of osmotically stressed chloroplasts to both varying pH and exogeous dihydroxyacetone phosphate (DHAP) or 3-phosphoglycerete (PGA) were examined. In the presence of DHAP, the absolute rate of CO2 fixation was increased and this increase was most pronounced at alkaline pH. Enhanced light activation of these enzymes was also observed under these conditions. However, in the presence of PGA, similar increases in photosynthetic rate and enzyme activation were not evident. Light-dependent stromal alkalization was unaffected by the stress treatments. Inhibition of light activation under hypertonic conditions is discussed in terms of substrate availability, possible alterations of the redox state of ferredoxin and associated electron carriers, and inhibited enzyme-enzyme or enzyme-substrate interactions involved in the light activation process.Abbreviations and symbols DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate - s osmotic potential  相似文献   
139.
Photoaffinity labeling techniques have recently demonstrated that mammalian β1- and β2-adrenergic receptors reside on peptides of Mr 62 000–64 000. These receptor peptides are susceptible to endogenous metalloproteinases which produce peptides of Mr 30 000–55 000. Several proteinase inhibitors markedly attenuate this process, specifically EDTA and EGTA. In this study we investigated the functional significance of this proteolysis (and its inhibition) in the β2-adrenergic receptor-adenylate cyclase system derived from rat lung membranes. Membrane preparations containing proteolytically derived fragments of the receptor of Mr 40000–55 000 are fully functional with respect to their ability to bind β-adrenergic antagonist radioligands such as [3H]dihydroalprenolol and β-adrenergic antagonist photoaffinity reagents such as p-azido-m-[125I]iodobenzylcarazolol. They retain the ability to form a high-affinity, agonist-promoted, guanine nucleotide-sensitive complex thought to represent a ternary complex of agonist, receptor and guanine nucleotide regulatory protein. Nonetheless, after proteolysis, GTP is less able to revert this high-affinity receptor complex to one of lower affinity, and all aspects of adenylate cyclase stimulation are reduced. In addition, the functional integrity of the N protein in membranes prepared without proteinase inhibitors is reduced as assessed by reconstitution studies with the cyc[su− variant of S49 lymphoma cell membranes. These results suggest that endogenous proteolysis does not directly impair the ability of β-adrenergic receptors to either bind ligands or interact with the guanine nucleotide regulatory protein. However, they imply that endogenous proteolysis likely impairs the functionality of other components of the adenylate cyclase system, such as the nucleotide regulatory protein.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号