首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18294篇
  免费   1559篇
  国内免费   4篇
  2023年   55篇
  2022年   115篇
  2021年   316篇
  2020年   175篇
  2019年   230篇
  2018年   322篇
  2017年   282篇
  2016年   402篇
  2015年   791篇
  2014年   844篇
  2013年   1063篇
  2012年   1484篇
  2011年   1453篇
  2010年   876篇
  2009年   865篇
  2008年   1196篇
  2007年   1211篇
  2006年   1103篇
  2005年   1118篇
  2004年   985篇
  2003年   925篇
  2002年   900篇
  2001年   189篇
  2000年   138篇
  1999年   186篇
  1998年   271篇
  1997年   159篇
  1996年   144篇
  1995年   142篇
  1994年   124篇
  1993年   115篇
  1992年   96篇
  1991年   82篇
  1990年   91篇
  1989年   87篇
  1988年   77篇
  1987年   55篇
  1986年   74篇
  1985年   76篇
  1984年   97篇
  1983年   75篇
  1982年   86篇
  1981年   104篇
  1980年   88篇
  1979年   56篇
  1978年   66篇
  1977年   53篇
  1976年   38篇
  1974年   56篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Cystic fibrosis (CF), characterized by chronic airway infection and inflammation, ultimately leads to respiratory failure. Exhaled nitric oxide (NO), elevated in most inflammatory airway diseases, is decreased in CF, suggesting either decreased production or accelerated metabolism of NO. The present studies performed on two groups of CF patients provide further support for a disordered NO airway metabolism in CF respiratory tract disease. Despite confirmation of subnormal NOS2 in the CF airway epithelium, alternative isoforms NOS1 and NOS3 were present, and inflammatory cells in the CF airway expressed abundant NOS2. Increased immunohistochemical staining for nitrotyrosine was demonstrated in lung tissues from patients with CF as compared to control. To our knowledge, this is the first report localizing nitrotyrosine in diseased CF lung tissue. While the relative NOS2 deficiency in CF respiratory tract epithelium may contribute to the lower expired NO levels, these results suggest that increased metabolism of NO is also present in advanced CF lung disease. The significance of altered NO metabolism and protein nitration in CF remains to be fully elucidated.  相似文献   
992.
Arteriviruses are enveloped, positive-stranded RNA viruses and include pathogens of major economic concern to the swine- and horse-breeding industries. The arterivirus replicase gene encodes two large precursor polyproteins that are processed by the viral main proteinase nonstructural protein 4 (nsp4). The three-dimensional structure of the 21-kDa nsp4 from the arterivirus prototype equine arteritis virus has been determined to 2.0 A resolution. Nsp4 adopts the smallest known chymotrypsin-like fold with a canonical catalytic triad of Ser-120, His-39, and Asp-65, as well as a novel alpha/beta C-terminal extension domain that may play a role in mediating protein-protein interactions. In different copies of nsp4 in the asymmetric unit, the oxyanion hole adopts either a collapsed inactive conformation or the standard active conformation, which may be a novel way of regulating proteolytic activity.  相似文献   
993.
Widespread use of beta-lactam antibiotics has promoted the evolution of beta-lactamase mutant enzymes that can hydrolyze ever newer classes of these drugs. Among the most pernicious mutants are the inhibitor-resistant TEM beta-lactamases (IRTs), which elude mechanism-based inhibitors, such as clavulanate. Despite much research on these IRTs, little is known about the structural bases of their action. This has made it difficult to understand how many of the resistance substitutions act as they often occur far from Ser-130. Here, three IRT structures, TEM-30 (R244S), TEM-32 (M69I/M182T), and TEM-34 (M69V), are determined by x-ray crystallography at 2.00, 1.61, and 1.52 A, respectively. In TEM-30, the Arg-244 --> Ser substitution (7.8 A from Ser-130) displaces a conserved water molecule that usually interacts with the beta-lactam C3 carboxylate. In TEM-32, the substitution Met-69 --> Ile (10 A from Ser-130) appears to distort Ser-70, which in turn causes Ser-130 to adopt a new conformation, moving its O gamma further away, 2.3 A from where the inhibitor would bind. This substitution also destabilizes the enzyme by 1.3 kcal/mol. The Met-182 --> Thr substitution (20 A from Ser-130) has no effect on enzyme activity but rather restabilizes the enzyme by 2.9 kcal/mol. In TEM-34, the Met-69 --> Val substitution similarly leads to a conformational change in Ser-130, this time causing it to hydrogen bond with Lys-73 and Lys-234. This masks the lone pair electrons of Ser-130 O gamma, reducing its nucleophilicity for cross-linking. In these three structures, distant substitutions result in accommodations that converge on the same point of action, the local environment of Ser-130.  相似文献   
994.
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.  相似文献   
995.
The activation of the muscarinic acetylcholine receptor (mAChR) family, consisting of five subtypes (M1-M5), produces a variety of physiological effects throughout the central nervous system. However, the role of each individual subtype remains poorly understood. To further elucidate signal transduction pathways for specific subtypes, we used the most divergent portion of the subtypes, the intracellular third (i3) loop, as bait to identify interacting proteins. Using a brain pull-down assay, we identify elongation factor 1A2 (eEF1A2) as a specific binding partner to the i3 loop of M4, and not to M1 or M2. In addition, we demonstrate a direct interaction between these proteins. In the rat striatum, the M4 mAChR colocalizes with eEF1A2 in the soma and neuropil. In PC12 cells, endogenous eEF1A2 co-immunoprecipitates with the endogenous M4 mAChR, but not with the endogenous M1 mAChR. In our in vitro model, M4 dramatically accelerates nucleotide exchange of eEF1A2, a GTP-binding protein. This indicates the M4 mAChR is a guanine exchange factor for eEF1A2. eEF1A2 is an essential GTP-binding protein for protein synthesis. Thus, our data suggest a novel role for M4 in the regulation of protein synthesis through its interaction with eEF1A2.  相似文献   
996.
p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family GTPases and have been implicated in the regulation of cell morphology and motility, as well as in cell transformation. To further investigate the possible involvement of PAK kinases in tumorigenesis, we analyzed the expression of several family members in tumor cell lines. Here we demonstrate that PAK4 is frequently overexpressed in human tumor cell lines of various tissue origins. We also have identified serine (Ser-474) as the likely autophosphorylation site in the kinase domain of PAK4 in vivo. Mutation of this serine to glutamic acid (S474E) results in constitutive activation of the kinase. Phosphospecific antibodies directed against serine 474 detect activated PAK4 on the Golgi membrane when PAK4 is co-expressed with activated Cdc42. Furthermore, expression of the active PAK4 (S474E) mutant has transforming potential, leading to anchorage-independent growth of NIH3T3 cells. A kinase-inactive PAK4 (K350A,K351A), on the other hand, efficiently blocks transformation by activated Ras and inhibits anchorage-independent growth of HCT116 colon cancer cells. Taken together, our data strongly implicate PAK4 in oncogenic transformation and suggest that PAK4 activity is required for Ras-driven, anchorage-independent growth.  相似文献   
997.
998.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   
999.
Tyrosylprotein sulfotransferases (TPSTs) catalyze the sulfation of tyrosine residues within secreted and membrane-bound proteins. The modification modulates protein-protein interactions in the extracellular environment. Here we use combinatorial target-guided ligand assembly to discover the first known inhibitors of human TPST-2.  相似文献   
1000.
A number of inhibitors of NF-kappaB signaling arising from our recent syntheses of isopanepoxydone and panepoxydone have been identified. Structure-activity data have been correlated to allow the design and synthesis of an affinity reagent for the isolation and identification of any relevant cellular target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号