首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   13篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   10篇
  2009年   13篇
  2008年   6篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   13篇
  2003年   5篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1972年   1篇
  1962年   1篇
  1955年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
51.
An extracellular lipase produced by the sapstaining fungus Ophiostoma piceae 387N in a liquid medium was purified to homogeneity using ammonium sulphate and acetone fractionation, hydrophobic interaction and anion exchange chromatography. The overall purification based on lipase activity was 5200-fold with a yield of 26%. The molecular mass of the lipase was 35kDa, as determined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE), and 37 kDa, as measured by size exclusion chromatography. The purified enzyme was resolved as three bands at pI values of 4.3, 4.1 and 3.8 in IEF (isoelectric focusing) gels. Lipolytic stain demonstrated that all three bands were lipolytically active. The N-terminal amino acid sequence was determined asD1-V2-S3-V4-T5-T6-T7-D8-I9-D10-A11-L12-A13-F14-F15-T16-Q17-W18-A19-G20 . The lipase was shown to be glycosylated, containing 10.1% carbohydrate. The lipase was stable between pH 4 and pH 8 and at temperatures below 40°C. The lipase activity had a pH optimum of approximately 5 and a temperature optimum of 30°C. The enzyme activity was not influenced by N-ethylmaleimide, -mercaptoethanol or dithiothreitol, was enhanced by Ca2+ or Mn2+, but was severely inhibited by Hg2+, Fe3+, butyric acid, caproic acid, diethyl pyrocarbonate, and diethyl p-nitrophenyl phosphate. The lipase hydrolysed mainly triglycerides, although some activity was measured on waxes and cholesteryl esters. It belongs to a group of 1 (3) positional specific lipases. It showed little activity for substrates with short chain fatty acids (C2–C6), but demonstrated high specificity for substrates with intermediate and long chain fatty acid residues (C10–C18).  相似文献   
52.
-Lactamase (penicillinase) activity was found in a number of strains of blue-green algae. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of -lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with NaNO3 as N source, the pH rose during growth; at a pH of about 10, most of the enzyme was extracellular and all the cell-bound enzyme was expressed equally well in intact or disrupted cells. If the pH was kept near neutrality during growth by gassing with CO2 in N2 or by growth under conditions of N2 fixation, the enzyme remained cell-bound and cryptic for most of the growth phase, being measurable only after cells were disrupted. The enzymes from strains 7003 and 7120 had greater activity on benzyl penicillin and other penicillins than on cephalo-sporins. Some differences were observed in the substrate profiles of penicillinases from the two strains against different penicillins.A preliminary account of this work was presented at the 1974 meetings of the American Society for Microbiology in Chicago (Abstracts of Meetings, M37)  相似文献   
53.
54.
Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomic background, and PCR-restriction fragment length 0polymorphism of a nodulation gene region, nodD, as a marker of the symbiotic function. The diversity, estimated by richness in types and Simpson's index, was consistently and remarkably lower in soils under maize monoculture than under the other soil managements at the three sites, except for the permanent grassland. The highest level of diversity was found under wheat monoculture. Nucleotide sequences of the main rDNA intergenic spacer types were determined and sequence analysis showed that the prevalent genotypes in the three maize fields were closely related. These results suggest that long-term maize monoculturing decreased the diversity of R. leguminosarum biovar viciae populations and favored a specific subgroup of genotypes, but the size of these populations was generally preserved. We also observed a shift in the distribution of the symbiotic genotypes within the populations under maize monoculture, but the diversity of the symbiotic genotypes was less affected than that of IGS types. The possible effect of such changes on biological nitrogen fixation remains unknown and this requires further investigation.  相似文献   
55.
56.
In order to grow in wood, sapstaining fungi produce multiple proteases. Previously we have shown that three groups of subtilases appear to be present in sapstaining fungi; however, it is unknown whether these groups have distinct physiological roles. A representative gene from each of the three groups was chosen and the copy number and presence of homologous genes in other sapstaining fungi were determined. As well, the expressional regulation of these genes was determined in response to available nutrients, exogenous pH, and culture age. Gene homologues in the Ofloc1 group were common in Ophiostoma species. However, homologues from the Opic group were found in only certain Ophiostoma species. Cr group homologues were found in all of the species tested, except for Ophiostoma piceae. The expression of opil1, an Ofloc1 group gene, was induced by BSA, regulated by pH, and expressed within 12h of induction by BSA. The expression of the opic gene, an Opic group gene, was induced by BSA but required the removal of either nitrogen or carbon repression, was also regulated by pH, and was expressed within 24h of BSA induction. The Cr group gene opil2 was expressed under all conditions tested.  相似文献   
57.

Background  

In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L.), also known as narrow-leaf lupin (NLL) is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch.  相似文献   
58.
The model of chronic intermittent stress by immobilization during pregnancy may produce alterations in the mechanisms that maintain adrenal gland homeostasis. In earlier investigations using this model, significant variations in plasma prolactin and corticosterone levels, and adrenal gland weights were observed. We hypothesized that chronic stress causes changes in apoptosis in the adrenal glands of pregnant rats. We identified and quantified apoptotic cells in the adrenal cortex and examined their ultrastructural characteristics using transmission electron microscopy. Adrenal glands of pregnant rats at gestation days 12, 17 and 21 were studied for control and experimental (stressed) rats. Immunolabelling techniques, stereological analysis and image quantification of adrenal gland sections were combined to determine differences in apoptosis in the different cell populations of the adrenal cortex. The apoptotic index of the experimental rats showed a significant reduction at gestation day 17, while at days 12 and 21 there were no differences from controls. Moreover, the apoptotic index of the reticular zones in control and experimental animals showed a significant increase compared to the glomerular and fascicular zones at the three gestation times studied. Chronic stress by immobilization reduced the caspase-dependent apoptotic index at gestation day 17, which may be related to variations in plasma concentrations of estrogens and prolactin.  相似文献   
59.
60.
Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets.Congenital obstructive nephropathy is the main cause of end stage renal disease (ESRD) in children (1). The most frequently found cause of congenital obstructive nephropathy is ureteropelvic junction (UPJ)1 obstruction with an estimated incidence of 1 in 1000–1500 births. Milder forms of UPJ obstruction often progress to the spontaneous resolution of the pathology over time. This has led to a watchful waiting approach with surgical intervention only if renal deterioration is detected (2). Although this medical surveillance prevents unnecessary surgery, it mostly relies on invasive follow-up. Consequently with the aim to reduce this invasive follow-up, several groups have initiated research to identify noninvasive urinary biomarkers of UPJ obstruction using both targeted and nontargeted (e.g. proteome analysis based) strategies. Targeted strategies including urinary cytokine expression analyses failed to clearly determine the need for surgery in UPJ obstruction (3, 4). On the other hand, untargeted strategies have been more successful and by using urinary proteomics, biomarkers for renal and non-renal diseases have been identified (59). Using urinary peptidome analysis, we identified and validated a urinary peptide panel that predicted the clinical outcome of newborns with UPJ obstruction with 97% accuracy several months in advance (3, 10). An independent small-scale study confirmed the efficiency of this biomarker panel (7). These studies indicate the potential of urinary proteomics to predict the clinical fate of patients with UPJ obstruction. Although these endogenous urinary peptide biomarkers are of great potential clinical value, sequencing of these biomarkers mainly identified collagen fragments that are less informative on the pathophysiology of the disease. In contrast, studies of the high molecular weight urinary proteome (i.e. proteins) might be more informative on the pathophysiology of disease. Different approaches have been used in the past to characterize the urinary proteome, either by 2D-gel electrophoresis coupled to mass spectrometry (11, 12) or reverse phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis (1316). In-depth proteome analysis using extensive fractionation of the sample and high resolution, fast sequencing mass spectrometers have reported the identification of >2000 proteins in normal human urine (13, 15, 16). Here, we applied quantitative high-resolution label free LC-MS/MS analysis for the identification of urinary proteins associated to UPJ obstruction in newborns. Among a number of proteins uniquely associated with severe UPJ obstruction, we identified Arginase 1, not previously recognized in UPJ obstruction. Using an independent larger cohort, we further verified reduced urinary abundance of Arginase 1 using both Western blot and multiple reaction monitoring (MRM). Using the mouse model of obstructive nephropathy, we observed that the expression of arginases is modulated in situ in obstructed kidneys. Further gene expression analysis of the arginase pathway allowed us to hypothesize for a role of arginases in the development of fibrotic lesions in obstructive nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号