首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2492篇
  免费   280篇
  国内免费   2篇
  2023年   10篇
  2022年   23篇
  2021年   67篇
  2020年   51篇
  2019年   66篇
  2018年   64篇
  2017年   55篇
  2016年   91篇
  2015年   135篇
  2014年   157篇
  2013年   175篇
  2012年   235篇
  2011年   228篇
  2010年   121篇
  2009年   117篇
  2008年   149篇
  2007年   156篇
  2006年   134篇
  2005年   138篇
  2004年   132篇
  2003年   108篇
  2002年   102篇
  2001年   27篇
  2000年   15篇
  1999年   26篇
  1998年   32篇
  1997年   16篇
  1996年   12篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   14篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1973年   3篇
  1971年   3篇
  1969年   2篇
  1927年   1篇
排序方式: 共有2774条查询结果,搜索用时 421 毫秒
141.
Starvation induces many biochemical and histological changes in the heart; however, the molecular events underlying these changes have not been fully elucidated. To explore the molecular response of the heart to starvation, microarray analysis was performed together with biochemical and histological investigations. Serum free fatty acids increased twofold in both 16- and 48-h-fasted mice, and cardiac triglyceride content increased threefold and sixfold in 16- and 48-h-fasted mice, respectively. Electron microscopy showed numerous lipid droplets in hearts of 48-h-fasted mice, whereas fewer numbers of droplets were seen in hearts from 16-h-fasted mice. Expression of 11,000 cardiac genes was screened by microarrays. More than 50 and 150 known genes were detected by differential expression analysis after 16- and 48-h-fasts, respectively. Genes for fatty acid oxidation and gluconeogenesis were increased, and genes for glycolysis were decreased. Many other genes for metabolism, signaling/cell cycle, cytoskeleton, and tissue antigens were affected by fasting. These data provide a broad perspective of the molecular events occurring physiologically in the heart in response to starvation.  相似文献   
142.
Aspects of metabolic regulation can be fruitfully studied with a combination of generic modelling, control analysis and graphical analysis using rate characteristics. This paper analyses a prototypical supply-demand system consisting of a biosynthetic subsystem subject to allosteric inhibition by its product and a demand process that consumes this product. The effect of changes in affinity of the committing supply enzyme for the pathway substrate on the regulatory properties of the supply subsystem is compared for the Monod-Wyman-Changeux and the reversible Hill allosteric enzyme models. We found that the Hill model has a distinct advantage in that the steady-state concentration at which it maintains the product is set by the half-saturating product concentration and is independent of changes in the degree of saturation for substrate. In contrast, with the Monod-Wyman-Changeux model this set point varies with affinity for substrate. Explicitly incorporating reversibility in all rate equations made it possible to distinguish between kinetic and thermodynamic aspects of regulation. Combining the supply and demand rate characteristics allows us to explore both the control distribution at steady state and the regulatory performance of the system over a wide range of demand activities.  相似文献   
143.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   
144.
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.  相似文献   
145.
Macrophages synthesize and secrete apolipoprotein E (apoE) constitutively. This process is upregulated under conditions of cholesterol loading. The response to cholesterol is antiatherogenic as it is believed to promote cholesterol efflux from the artery wall. The concentration of lactosyl ceramide (LacCer), a glycosphingolipid recently discovered to regulate cellular signaling, proliferation, and expression of adhesion molecules, is also increased in atherosclerotic tissues. Here we have investigated the effect of exogenous LacCer on macrophage apoE levels. We show that increasing macrophage LacCer levels sevenfold led to reductions in cellular and secreted apoE (15 and 30%, respectively, over a 24-h period) as determined by enzyme-linked immunosorbent assay. A similar effect was also induced by glucosyl ceramide (GlcCer) but not by ganglioside species. When macrophages were converted to cholesterol-loaded foam cells by incubation with acetylated LDL, the resulting increase in cellular apoE levels was inhibited by 26% when the cells were subsequently enriched with LacCer. After metabolic labeling of cellular glycosphingolipids with [14C]palmitate, we also discovered that high-density lipoprotein (HDL) stimulates the efflux of glycosphingolipids from foam cells. These data imply that LacCer and GlcCer may be proatherogenic due to the suppression of macrophage apoE production. Furthermore, the efflux of glycosphingolipids from macrophage foam cells to HDL could indicate a potential pathway for their removal from the artery wall and subsequent delivery to the liver.  相似文献   
146.
Burkholderia pseudomallei and Burkholderia thailandensis express similar O-antigens (O-PS II) in which their 6-deoxy-alpha-L-talopyranosyl (L-6dTalp) residues are variably substituted with O-acetyl groups at the O-2 or O-4 positions. In previous studies we demonstrated that the protective monoclonal antibody, Pp-PS-W, reacted with O-PS II expressed by wild-type B. pseudomallei strains but not by a B. pseudomallei wbiA null mutant. In the present study we demonstrate that WbiA activity is required for the acetylation of the L-6dTalp residues at the O-2 position and that structural modification of O-PS II molecules at this site is critical for recognition by Pp-PS-W.  相似文献   
147.
Signaling Interactions During Nodule Development   总被引:20,自引:3,他引:17  
Nitrogen fixing bacteria, collectively referred to as rhizobia, are able to trigger the organogenesis of a new organ on legumes, the nodule. The morphogenetic trigger is a Rhizobium-produced lipochitin-oligosaccharide called the Nod factor, which is necessary, and in some legumes sufficient, for triggering nodule development in the absence of the bacterium. Because plant development is substantially influenced by plant hormones, it has been hypothesized that plant hormones (mainly the classical hormones abscisic acid, auxin, cytokinins, ethylene and gibberellic acid) regulate nodule development. In recent years, evidence has shown that Nod factors might act in legumes by changing the internal plant hormone balance, thereby orchestrating the nodule developmental program. In addition, many nonclassical hormonal signals have been found to play a role in nodule development, some of them similar to signals involved in animal development. These compounds include peptide hormones, nitric oxide, reactive oxygen species, jasmonic acid, salicylic acid, uridine, flavonoids and Nod factors themselves. Environmental factors, in particular nitrate, also influence nodule development by affecting the plant hormone status. This review summarizes recent findings on the involvement of classical and nonclassical signals during nodule development with the aim of illustrating the multiple interactions existing between these compounds that have made this area so complicated to analyze.  相似文献   
148.
The adaptor appendage domains are believed to act as binding platforms for coated vesicle accessory proteins. Using glutathione S-transferase pulldowns from pig brain cytosol, we find three proteins that can bind to the appendage domains of both the AP-1 gamma subunit and the GGAs: gamma-synergin and two novel proteins, p56 and p200. p56 elicited better antibodies than p200 and was generally more tractable. Although p56 and gamma-synergin bind to both GGA and gamma appendages in vitro, immunofluorescence labeling of nocodazole-treated cells shows that p56 colocalizes with GGAs on TGN46-positive membranes, whereas gamma-synergin colocalizes with AP-1 primarily on a different membrane compartment. Furthermore, in AP-1-deficient cells, p56 remains membrane-associated whereas gamma-synergin becomes cytosolic. Thus, p56 and gamma-synergin show very strong preferences for GGAs and AP-1, respectively, in vivo. However, the GGA and gamma appendages share the same fold as determined by x-ray crystallography, and mutagenesis reveals that the same amino acids contribute to their binding sites. By overexpressing wild-type GGA and gamma appendage domains in cells, we can drive p56 and gamma-synergin, respectively, into the cytosol, suggesting a possible mechanism for selectively disrupting the two pathways.  相似文献   
149.
The Golgi-associated, gamma-adaptin-related, ADP-ribosylation-factor binding proteins (GGAs) and adaptor protein (AP)-1 are adaptors involved in clathrin-mediated transport between the trans-Golgi network and endosomal system. The appendage domains of GGAs and the AP-1 gamma-adaptin subunit are structurally homologous and have been proposed to bind to accessory proteins via interaction with short sequences containing phenylalanines and acidic residues. Here we present the structure of the human GGA1 appendage in complex with its cognate binding peptide from the p56 accessory protein (DDDDFGGFEAAETFD) as determined by X-ray crystallography. The interaction is governed predominantly by packing of the first two phenylalanine residues of the peptide with conserved basic and hydrophobic residues from GGA1. Additionally, several main chain hydrogen bonds cause the peptide to form an additional beta-strand on the edge of the preexisting beta-sheet of the protein. Isothermal titration calorimetry was used to assess the affinities of different peptides for the GGA and gamma-appendage domains.  相似文献   
150.
The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode's intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin production. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号