首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2828篇
  免费   323篇
  国内免费   2篇
  2023年   10篇
  2022年   25篇
  2021年   71篇
  2020年   52篇
  2019年   68篇
  2018年   68篇
  2017年   59篇
  2016年   94篇
  2015年   142篇
  2014年   168篇
  2013年   187篇
  2012年   251篇
  2011年   237篇
  2010年   128篇
  2009年   125篇
  2008年   159篇
  2007年   170篇
  2006年   145篇
  2005年   156篇
  2004年   149篇
  2003年   119篇
  2002年   106篇
  2001年   34篇
  2000年   22篇
  1999年   35篇
  1998年   34篇
  1997年   17篇
  1996年   15篇
  1995年   14篇
  1994年   10篇
  1993年   11篇
  1992年   18篇
  1991年   14篇
  1990年   9篇
  1989年   14篇
  1988年   15篇
  1987年   20篇
  1986年   17篇
  1985年   15篇
  1984年   8篇
  1983年   16篇
  1982年   9篇
  1981年   8篇
  1980年   12篇
  1979年   11篇
  1978年   14篇
  1977年   7篇
  1972年   6篇
  1971年   7篇
  1969年   10篇
排序方式: 共有3153条查询结果,搜索用时 171 毫秒
151.
Increased nitric oxide (NO) production by inducible NO synthase (NOS2), an obligate homodimer, is implicated in the cardiovascular sequelae of sepsis. We tested the ability of a highly selective NOS2 dimerization inhibitor (BBS-2) to prevent endotoxin-induced systemic hypotension, myocardial dysfunction, and impaired hypoxic pulmonary vasoconstriction (HPV) in mice. Mice were challenged with Escherichia coli endotoxin before treatment with BBS-2 or vehicle. Systemic blood pressure was measured before and 4 and 7 h after endotoxin challenge, and echocardiographic parameters of myocardial function were measured before and 7 h after endotoxin challenge. The pulmonary vasoconstrictor response to left mainstem bronchus occlusion, which is a measure of HPV, was studied 22 h after endotoxin challenge. BBS-2 treatment alone did not alter baseline hemodynamics. BBS-2 treatment blocked NOS2 dimerization and completely inhibited the endotoxin-induced increase of plasma nitrate and nitrite levels. Treatment with BBS-2 after endotoxin administration prevented systemic hypotension and attenuated myocardial dysfunction. BBS-2 also prevented endotoxin-induced impairment of HPV. In contrast, treatment with NG-nitro-l-arginine methyl ester, which is an inhibitor of all three NOS isoforms, prevented the systemic hypotension but further aggravated the myocardial dysfunction associated with endotoxin challenge. Treatment with BBS-2 prevented endotoxin from causing key features of cardiovascular dysfunction in endotoxemic mice. Selective inhibition of NOS2 dimerization with BBS-2, while sparing the activities of other NOS isoforms, may prove to be a useful treatment strategy in sepsis.  相似文献   
152.
153.
Taneva S  Johnson JE  Cornell RB 《Biochemistry》2003,42(40):11768-11776
CTP:phosphocholine cytidylyltranferase (CCT) regulates phosphatidylcholine (PC) biosynthesis. Its activity is controlled by reversible interactions with membrane lipids, mediated by an internal segment referred to as domain M. Although domain M peptides adopt an amphipathic alpha-helical structure when membrane bound, the structure of this domain in the context of the whole enzyme in the lipid-free and lipid-bound state is unknown. Here we derive lipid-induced secondary structural changes in CCTalpha using circular dichroism and three deconvolution programs. The analysis of two fragments, CCT236 (CCT1-236, housing the catalytic domain) and a synthetic domain M peptide (CCT237-293) aided the assignment of structural change to specific domains. To carry out this study, we developed a micellar lipid activating system that would avoid generation of CCT-induced lipid vesicle aggregates that interfere with the CD analysis. Lysophosphatidylcholine/phosphatidylglycerol (LPC/PG) mixed micelles supported full activation of CCT and caused an increase in the alpha-helix content of full-length CCT from 25 to 41%, at the expense of all other conformations. LPC/PG also induced an increase in alpha-helix content of the domain M peptide from 7 to 85% at the expense of all other conformers. This lipid system did not significantly affect the secondary structure of CCT236, nor did it affect the proteolytic fragmentation pattern of this region within full-length CCT, suggesting that the region containing the catalytic domain changes very little upon membrane activation of CCT. Our data suggest that lipids trigger a conformational switch in domain M from a mixed structure to an alpha-helix, thus creating a hydrophobic face for membrane insertion. Our results negate the idea that domain M is entirely helical in both the soluble and membrane-bound forms of CCT.  相似文献   
154.
155.
BACKGROUND: 5'-methylthioadenosine/S-adenosyl-homocysteine (MTA/AdoHcy) nucleosidase catalyzes the irreversible cleavage of 5'-methylthioadenosine and S-adenosylhomocysteine to adenine and the corresponding thioribose, 5'-methylthioribose and S-ribosylhomocysteine, respectively. While this enzyme is crucial for the metabolism of AdoHcy and MTA nucleosides in many prokaryotic and lower eukaryotic organisms, it is absent in mammalian cells. This metabolic difference represents an exploitable target for rational drug design. RESULTS: The crystal structure of E. coli MTA/AdoHcy nucleosidase was determined at 1.90 A resolution with the multiwavelength anomalous diffraction (MAD) technique. Each monomer of the MTA/AdoHcy nucleosidase dimer consists of a mixed alpha/beta domain with a nine-stranded mixed beta sheet, flanked by six alpha helices and a small 3(10) helix. Intersubunit contacts between the two monomers present in the asymmetric unit are mediated primarily by helix-helix and helix-loop hydrophobic interactions. The unexpected presence of an adenine molecule in the active site of the enzyme has allowed the identification of both substrate binding and potential catalytic amino acid residues. CONCLUSIONS: Although the sequence of E. coli MTA/AdoHcy nucleosidase has almost no identity with any known enzyme, its tertiary structure is similar to both the mammalian (trimeric) and prokaryotic (hexameric) purine nucleoside phosphorylases. The structure provides evidence that this protein is functional as a dimer and that the dual specificity for MTA and AdoHcy results from the truncation of a helix. The structure of MTA/AdoHcy nucleosidase is the first structure of a prokaryotic nucleoside N-ribohydrolase specific for 6-aminopurines.  相似文献   
156.
  • 1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM).
  • 2 Glacial/early Holocene (26–10 14C kyr bp or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south‐eastern California/south‐western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ~4.0 14C kyr bp . Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr bp . Hexaploids appeared by 8.5 14C kyr bp in the lower Colorado River Basin, reaching their northernmost limits (~37°N) in the Mohave Desert between 5.6 and 3.9 14C kyr bp .
  • 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations.
  • 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture.
  相似文献   
157.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   
158.
Cyanobacterial blooms are potential health hazards in water supply reservoirs. This paper reports analyses of a cyanobacterial bloom by use of PCR-based methods for direct detection and identification of strains present and determination of their toxigenicity. Serial samples from Malpas Dam, in the New England region of Australia, were analyzed during a prolonged, mixed cyanobacterial bloom in the summer of 2000 to 2001. Malpas Dam has been shown in the past to have toxic blooms of Microcystis aeruginosa that have caused liver damage in the human population drinking from this water supply reservoir. Cyanobacterial genera were detected at low cell numbers by PCR amplification of the phycocyanin intergenic spacer region between the genes for the beta and alpha subunits. The potential for microcystin production was determined by PCR amplification of a gene in the microcystin biosynthesis pathway. The potential for saxitoxin production was determined by PCR amplification of a region of the 16S rRNA gene of Anabaena circinalis strains. Toxicity of samples was established by mouse bioassay and high-pressure liquid chromatography. We show that bloom components can be identified and monitored for toxigenicity by PCR more effectively than by other methods such as microscopy and mouse bioassay. We also show that toxigenic strains of Anabaena and Microcystis spp. occur at this site and that, over the course of the bloom, the cell types and toxicity changed. This work demonstrates that PCR detection of potential toxicity can enhance the management of a significant public health hazard.  相似文献   
159.
160.
Couch BC  Kohn LM 《Mycologia》2002,94(4):683-693
Magnaporthe oryzae is described as a new species distinct from M. grisea. Gene trees were inferred for Magnaporthe species using portions of three genes: actin, beta-tubulin, and calmodulin. These gene trees were found to be concordant and distinguished two distinct clades within M. grisea. One clade is associated with the grass genus Digitaria and is therefore nomenclaturally tied to M. grisea. The other clade is associated with Oryza sativa and other cultivated grasses and is described as a new species, M. oryzae. While no morphological characters as yet distinguish them, M. oryzae is distinguished from M. grisea by several base substitutions in each of three loci as well as results from laboratory matings; M.oryzae and M. grisea are not interfertile. Given that M. oryzae is the scientifically correct name for isolates associated with rice blast and grey leaf spot, continued use of M. grisea for such isolates would require formal nomenclatural conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号