首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   77篇
  国内免费   2篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   9篇
  2014年   25篇
  2013年   23篇
  2012年   26篇
  2011年   20篇
  2010年   19篇
  2009年   25篇
  2008年   13篇
  2007年   13篇
  2006年   17篇
  2005年   10篇
  2004年   15篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   18篇
  1997年   9篇
  1996年   15篇
  1995年   6篇
  1994年   8篇
  1993年   9篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
111.
The gene encoding the antifungal protein osmotin is induced by several hormonal and environmental signals. In this study, tissue-specific and inducer-mediated expression of the reporter gene -glucuronidase (uidA) fused to different fragment lengths of the osmotin promoter was evaluated in transgenic tobacco (Nicotiana tabacum). The region of the promoter between –248 to –108 (Fragment A) was found to be essential and sufficient for inducer (abscisic acid (ABA), C2H4 and NaCl)-mediated expression of the reporter gene. Expression of the reporter gene was developmentally regulated and increased with maturity of leaves, stem and flowers. Expression also was tissue-specific being most highly expressed in epidermis and vascular parenchyma of the stem. The regulators ABA, C2H4 and NaCl exhibited tissue-specific induction of this promoter. The promoter was specifically responsive to C2H4 in flowers at virtually all stages of development, but not responsive in these tissues to ABA or NaCl. Conversely, ABA and NaCl were able to induce reporter gene activity using promoter Fragment A in specific tissues of root where C2H4 was unable to induce activity. Further dissection of the promoter Fragment A into fragments containing either the conserved GCC element (PR); PR/AT; or G/AT sequences, and subsequent testing of these fragments fused to GUS in transgenic plants was performed. These experiments revealed that the promoter fragment containing PR element alone, although required, was barely able to allow responsiveness to C2H4. However, significant C2H4-induced activity was obtained with a promoter fragment containing the AT and PR elements together.  相似文献   
112.
Sea urchin Hox genes: insights into the ancestral Hox cluster   总被引:3,自引:0,他引:3  
We describe the Hox cluster in the radially symmetric sea urchin and compare our findings to what is known from clusters in bilaterally symmetric animals. Several Hox genes from the direct-developing sea urchin Heliocidaris erythrogramma are described. CHEF gel analysis shows that the Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA, and only a single cluster is present, as in lower chordates and other nonvertebrate metazoans. Phylogenetic analyses of sea urchin, amphioxus, Drosophila, and selected vertebrate Hox genes confirm that the H. erythrogramma genes, and others previously cloned from other sea urchins, belong to anterior, central, and posterior groups. Despite their radial body plan and lack of cephalization, echinoderms retain at least one of the anterior group Hox genes, an orthologue of Hox3. The structure of the echinoderm Hox cluster suggests that the ancestral deuterostome had a Hox cluster more similar to the current chordate cluster than was expected Sea urchins have at least three Abd-B type genes, suggesting that Abd-B expansion began before the radiation of deuterostomes.   相似文献   
113.
A procedure for the extraction of large quantities of PR-5 proteins that have been recalcitrant to microbial-based expression systems is described. Targeting of the recombinant proteins to the extracellular matrix allowed efficient protein extraction by a vacuum infiltration/centrifugation system. Approximately 1 kg of fresh leaves from transgenic tobacco plants overexpressing either truncated osmotin (Liu et al., 1996) or A9 fromAtriplex nummularia L. (Casas et al., 1991) yielded between 3 and 5 mg of purified proteins that fully retained their antifungal activity. The entire system of overexpression, extraction, and purification could be easily scaled up for the production of several grams of protein.  相似文献   
114.
Abstract:  The leafhopper Erythroneura vulnerata Fitch is native to North America, where it infests wild and cultivated grapes. In July 2004, E. vulnerata was recorded for the first time on Vitis vinifera L. (cv. Cabernet Sauvignon) in north-eastern Italy (Veneto region). This record is assumed to be the first in Europe. Preliminary observations on the pest distribution, seasonal abundance and the extent of symptoms in north-eastern Italy are reported.  相似文献   
115.
116.
Cells of tobacco (Nicotiana tabacum L.) adapted to grow in severe osmotic stress of 428 millimolar NaCl (−23 bar) or 30% polyethylene glycol 8000 (−28 bar) exhibit a drastically altered growth physiology that results in slower cell expansion and fully expanded cells with volumes only one-fifth to one-eighth those of unadapted cells. This reduced cell volume occurs despite maintenance of turgor pressures sometimes severalfold higher than those of unadapted cells. This report and others (NM Iraki et al [1989] Plant Physiol 90: 000-000 and 000-000) document physical and biochemical alterations of the cell walls which might explain how adapted cells decrease the ability of the wall to expand despite diversion of carbon used for osmotic adjustment away from synthesis of cell wall polysaccharides. Tensile strength measured by a gas decompression technique showed empirically that walls of NaCl-adapted cells are much weaker than those of unadapted cells. Correlated with this weakening was a substantial decrease in the proportion of crystalline cellulose in the primary cell wall. Even though the amount of insoluble protein associated with the wall was increased relative to other wall components, the amount of hydroxyproline in the insoluble protein of the wall was only about 10% that of unadapted cells. These results indicate that a cellulosic-extensin framework is a primary determinant of absolute wall tensile strength, but complete formation of this framework apparently is sacrificed to divert carbon to substances needed for osmotic adjustment. We propose that the absolute mass of this framework is not a principal determinant of the ability of the cell wall to extend.  相似文献   
117.
Osmotin is a major protein which accumulates in tobacco cells (Nicotiana tabacum L. var Wisconsin 38) adapted to low water potentials. Quantitation of osmotin levels by immunoblots indicated that cells adapted to 428 millimolar NaCl contained 4 to 30 times the level of osmotin found in unadapted cells, depending on the stage of growth. Unadapted cells accumulated low levels of osmotin with apparent isoelectric points, (pl) of 7.8 and >8.2. Upon transfer of NaCl-adapted cells to medium without NaCl and subsequent growth for many cell generations, the amount of osmotin declined gradually to a level intermediate between that found in adapted and unadapted cells. NaCl-adapted cells grown in the absence of NaCl accumulated both pl forms; however, the form accumulated by cells adapted to NaCl (pl > 8.2) was most abundant. Adapted cells grown in the absence of NaCl exhibited absolute growth rates and NaCl tolerance levels which were intermediate to those of NaCl-adapted and unadapted cells. The association between osmotin accumulation and stable NaCl tolerance indicates that cells with a stable genetic change affecting the accumulation of osmotin are selected during prolonged exposure to high levels of NaCl. This stable alteration in gene expression probably affects salt tolerance.  相似文献   
118.
Osmotic adjustment of cultured tobacco (Nicotiana tabacum L. var Wisconsin 38) cells was stimulated by 10 micromolar (±) abscisic acid (ABA) during adaptation to water deficit imposed by various solutes including NaCl, KCl, K2SO4, Na2SO4, sucrose, mannitol, or glucose. The maximum difference in cell osmotic potential (Ψπ) caused by ABA treatment during adaptation to 171 millimolar NaCl was about 6 to 7 bar. The cell Ψπ differences elicited by ABA were not due to growth inhibition since ABA stimulated growth of cells in the presence of 171 millimolar NaCl. ABA caused a cell Ψπ difference of about 1 to 2 bar in medium without added NaCl. Intracellular concentrations of Na+, K+, Cl, free amino acids, or organic acids could not account for the Ψπ differences induced by ABA in NaCl treated cells. However, since growth of NaCl treated cells is more rapid in the presence of ABA than in its absence, greater accumulation of Na+, K+, and Cl was necessary for ion pool maintenance. Higher intracellular sucrose and reducing sugar concentrations could account for the majority of the greater osmotic adjustment of ABA treated cells. More rapid accumulation of proline associated with ABA treatment was highly correlated with the effects of ABA on cell Ψπ. These and other data indicate that the role of ABA in accelerating salt adaptation is not mediated by simply stimulating osmotic adjustment.  相似文献   
119.
Solute Accumulation in Tobacco Cells Adapted to NaCl   总被引:18,自引:9,他引:9       下载免费PDF全文
Cells of Nicotiana tabacum L. var Wisconsin 38 adapted to NaCl (up to 428 millimolar) which have undergone extensive osmotic adjustment accumulated Na+ and Cl as principal solutes for this adjustment. Although the intracellular concentrations of Na+ and Cl correlated well with the level of adaptation, these ions apparently did not contribute to the osmotic adjustment which occurred during a culture growth cycle, because the concentrations of Na+ and Cl did not increase during the period of most active osmotic adjustment. The average intracellular concentrations of soluble sugars and total free amino acids increased as a function of the level of adaptation; however, the levels of these solutes did not approach those observed for Na+ and Cl. The concentration of proline was positively correlated with cell osmotic potential, accumulating to an average concentration of 129 millimolar in cells adapted to 428 millimolar NaCl and representing about 80% of the total free amino acid pool as compared to an average of 0.29 millimolar and about 4% of the pool in unadapted cells. These results indicate that although Na+ and Cl are principal components of osmotic adjustment, organic solutes also may make significant contributions.  相似文献   
120.
Suspension cultured cells of tomato (Lycopersicon esculentum Mill. cv VFNT Cherry) adapted to water stress induced with polyethylene glycol 6000 (PEG), exhibit marked alterations in free amino acid pools (Handa et al. 1983 Plant Physiol 73: 834-843). Using computer simulation models the in vivo rates of synthesis and utilization and compartmentation of free amino acid pools were determined from 15N labeling kinetics after substituting [15N]ammonium and [15N]nitrate for the 14N salts in the culture medium of cell lines adapted to 0% and 25% PEG. The 300-fold elevated proline pool in 25% PEG adapted cells is primarily the consequence of a 10-fold elevated rate of proline synthesis via the glutamate pathway. Ornithine was insufficiently labeled to serve as a major precursor for proline. Our calculations suggest that the rate of proline synthesis only slightly exceeds the rate required to sustain both protein synthesis and proline pool maintenance with growth. Mechanisms must operate to restrict proline oxidation in adapted cells. The kinetics of labeling of proline in 25% PEG adapted cells are consistent with a single, greatly enlarged metabolic pool of proline. The depletion of glutamine in adapted cells appears to be a consequence of a selective depletion of a large, metabolically inactive storage pool present in unadapted cultures. The labeling kinetics of the amino nitrogen groups of glutamine and glutamate are consistent with the operation of the glutamine synthetase-glutamate synthase cycle in both cell lines. However, we could not conclusively discriminate between the exclusive operation of the glutamine synthetase-glutamate synthase cycle and a 10 to 20% contribution of the glutamate dehydrogenase pathway of ammonia assimilation. Adaptation to water stress leads to increased nitrogen flux from glutamate into alanine and γ-aminobutyrate, suggesting increased pyruvate availability and increased rates of glutamate decarboxylation. Both alanine and γ-aminobutyrate are synthesized at rates greatly in excess of those simply required to maintain the free pools with growth, indicating that these amino acids are rapidly turned over. Thus, both synthesis and utilization rates for alanine and γ-aminobutyrate are increased in adapted cells. Adaptation to stress leads to increased rates of synthesis of valine and leucine apparently at the expense of isoleucine. Remarkably low 15N flux via the aspartate family amino acids was observed in these experiments. The rate of synthesis of threonine appeared too low to account for threonine utilization in protein synthesis, pool maintenance, and isoleucine biosynthesis. It is possible that isoleucine may be deriving carbon skeletons from sources other than threonine. Tentative models of the nitrogen flux of these two contrasting cell lines are discussed in relation to carbon metabolism, osmoregulation, and nitrogenous solute compartmentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号