首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2169篇
  免费   217篇
  国内免费   1篇
  2023年   10篇
  2022年   23篇
  2021年   41篇
  2020年   23篇
  2019年   33篇
  2018年   47篇
  2017年   34篇
  2016年   48篇
  2015年   71篇
  2014年   93篇
  2013年   123篇
  2012年   168篇
  2011年   169篇
  2010年   90篇
  2009年   95篇
  2008年   138篇
  2007年   141篇
  2006年   116篇
  2005年   104篇
  2004年   96篇
  2003年   93篇
  2002年   100篇
  2001年   36篇
  2000年   26篇
  1999年   30篇
  1998年   18篇
  1997年   26篇
  1996年   17篇
  1995年   26篇
  1994年   12篇
  1993年   8篇
  1992年   21篇
  1991年   26篇
  1990年   17篇
  1989年   30篇
  1988年   17篇
  1987年   21篇
  1986年   19篇
  1985年   15篇
  1984年   8篇
  1983年   7篇
  1982年   13篇
  1981年   7篇
  1977年   7篇
  1975年   9篇
  1974年   16篇
  1972年   9篇
  1971年   9篇
  1970年   10篇
  1966年   6篇
排序方式: 共有2387条查询结果,搜索用时 14 毫秒
51.
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in‐depth proteomics analysis using high‐resolution data‐dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.  相似文献   
52.
Maintaining the activity and function of the shallow root system of plants is essential for withstanding drought stress, but the associated mechanism is poorly understood. By investigating sap flow in 14 lateral roots (LRs) randomly selected from trees of a Chinese white poplar (Populus tomentosa) plantation receiving three levels of irrigation, an unknown root water transport mode of simultaneous daytime bi-directional water flow was discovered. This mode existed in five LRs confined to the surface soil without attached sinker roots. In the longer term, the bi-directional water flow was correlated with the soil water content. However, within the day, it was associated with transpiration. Our data demonstrated that bi-directional root sap flow occurred during the day, and was driven by evaporative demand, further suggesting the existence of circumferential water movement in the LR xylem. We named this phenomenon evaporation-driven hydraulic redistribution (EDHR). A soil-root water transport model was proposed to encapsulate this water movement mode. EDHR may be a crucial drought-tolerance mechanism that allows plants to maintain shallow root survival and activity by promoting root water recharge under extremely dry conditions.  相似文献   
53.
54.
A prior laboratory study found that when wearing a weight transfer device in the stooped posture, trunk flexions were reduced, and subjects who did not experience flexion–relaxation of the erector spinae had reduced back muscle activity. Whole-body musculoskeletal models, which included individual passive torso stiffness and anthropometry, were implemented to predict loads in the passive tissues of the back and the leg joints. Results predicted that when wearing the device in the stooped posture, compression and shear forces at the L5–S1 level were reduced by 13% and 12% respectively. Internal loads in the leg joints were reduced between 10% and 31%. Much of the reduction in joint loads may be a result of the device’s ability to limit torso flexion during stoop, rather than a transferring of load. While these results show possible benefit in the short-term, further study is needed on the long-term effects to determine if the device is an effective intervention for those who use the stooped posture routinely.  相似文献   
55.
Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co‐evolutionary framework for explaining transposon‐host interactions. This review aims to clarify the conceptual foundations of transposon ecology in order to evaluate its explanatory prospects. We begin by identifying three unanswered questions regarding the abundance and distribution of TEs that potentially call for an ecological explanation. We then offer an operational distinction between evolutionary and ecological approaches to these questions. By determining the amount of variance in transposon abundance and distribution that is explained by ecological and evolutionary factors, respectively, it is possible empirically to assess the prospects for each of these explanatory frameworks. To illustrate how this methodology applies to a concrete example, we analyzed whole‐genome data for one set of distantly related mammals and another more closely related group of arthropods. Our expectation was that ecological factors are most informative for explaining differences among individual TE lineages, rather than TE families, and for explaining their distribution among closely related as opposed to distantly related host genomes. We found that, in these data sets, ecological factors do in fact explain most of the variation in TE abundance and distribution among TE lineages across less distantly related host organisms. Evolutionary factors were not significant at these levels. However, the explanatory roles of evolution and ecology become inverted at the level of TE families or among more distantly related genomes. Not only does this example demonstrate the utility of our distinction between ecological and evolutionary perspectives, it further suggests an appropriate explanatory domain for the burgeoning discipline of transposon ecology. The fact that ecological processes appear to be impacting TE lineages over relatively short time scales further raises the possibility that transposons might serve as useful model systems for testing more general hypotheses in ecology.  相似文献   
56.
57.

Background

Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation.

Results

We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time.

Conclusions

Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.  相似文献   
58.
59.
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre– and post–power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.  相似文献   
60.

Background

Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.

Methods

Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2 g/kg) 1 h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.

Results

Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60 pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48 h for USPIO and MPIO, respectively.

Conclusions

Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.

General significance

Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号