首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   190篇
  国内免费   1篇
  2415篇
  2023年   10篇
  2022年   25篇
  2021年   40篇
  2020年   21篇
  2019年   35篇
  2018年   48篇
  2017年   38篇
  2016年   52篇
  2015年   68篇
  2014年   95篇
  2013年   125篇
  2012年   166篇
  2011年   179篇
  2010年   95篇
  2009年   95篇
  2008年   140篇
  2007年   145篇
  2006年   123篇
  2005年   102篇
  2004年   102篇
  2003年   100篇
  2002年   104篇
  2001年   41篇
  2000年   30篇
  1999年   28篇
  1998年   21篇
  1997年   25篇
  1996年   17篇
  1995年   27篇
  1994年   10篇
  1992年   20篇
  1991年   24篇
  1990年   16篇
  1989年   28篇
  1988年   16篇
  1987年   18篇
  1986年   19篇
  1985年   14篇
  1984年   8篇
  1982年   13篇
  1981年   8篇
  1980年   7篇
  1979年   7篇
  1977年   7篇
  1975年   10篇
  1974年   13篇
  1973年   11篇
  1972年   9篇
  1971年   8篇
  1970年   10篇
排序方式: 共有2415条查询结果,搜索用时 15 毫秒
91.
The architecture of grass genomes varies on multiple levels. Large long terminal repeat retrotransposon clusters occupy significant portions of the intergenic regions, and islands of protein-encoding genes are interspersed among the repeat clusters. Hence, advanced assembly techniques are required to obtain completely finished genomes as well as to investigate gene and transposable element distributions. To characterize the organization and distribution of repeat clusters and gene islands across large grass genomes, we present 961- and 594-kb contiguous sequence contigs associated with the rf1 (for restorer of fertility1) locus in the near-centromeric region of maize (Zea mays) chromosome 3. We present two methods for computational finishing of highly repetitive bacterial artificial chromosome clones that have proved successful to close all sequence gaps caused by transposable element insertions. Sixteen repeat clusters were observed, ranging in length from 23 to 155 kb. These repeat clusters are almost exclusively long terminal repeat retrotransposons, of which the paleontology of insertion varies throughout the cluster. Gene islands contain from one to four predicted genes, resulting in a gene density of one gene per 16 kb in gene islands and one gene per 111 kb over the entire sequenced region. The two sequence contigs, when compared with the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes, retain gene colinearity of 50% and 71%, respectively, and 70% and 100%, respectively, for high-confidence gene models. Collinear genes on single gene islands show that while most expansion of the maize genome has occurred in the repeat clusters, gene islands are not immune and have experienced growth in both intragene and intergene locations.Genome sequencing of the maize (Zea mays) genome is nearing completion (Bennetzen et al., 2001; Chandler and Brendel, 2002; Wessler, 2006); it is the largest and most difficult-to-assemble plant genome sequenced to date. Maize is an important economic, agricultural, industrial, and research crop; however, with a genome close to the size of the human genome (2.8 Gb) and its high percentage of repetitive elements, acquiring the maize genome seemed a daunting task. Approximately 67% of the genome is made up of transposable elements (TEs; Haberer et al., 2005; Kronmiller and Wise, 2008), increasing the difficulty of assembly (Rabinowicz and Bennetzen, 2006). Much exploratory work has gone into isolating and sequencing just the gene areas and ignoring the repetitive regions, both by methylation filtration (Rabinowicz et al., 1999; Palmer et al., 2003; Whitelaw et al., 2003) and high-C0t (Whitelaw et al., 2003; Yuan et al., 2003) systems, which have assisted researchers with selecting only genic regions to sequence. These methods have captured a majority of the maize genic sequence (Fu et al., 2005), but they still have the potential to miss important regions. The current genome-sequencing project aims to capture the entire gene set of maize, including regulatory regions. However, the current strategy will not provide a fully assembled genome but rather assembled bacterial artificial chromosome (BAC) contigs ordered and orientated to provide complete gene regions that are adjacent to potentially incomplete TE clusters.The landscape of the maize genome provides an interesting challenge for both sequencing and subsequent annotation. A high density of long terminal repeat (LTR) retrotransposons has had a direct effect on the genome size of many plant genomes, including maize (SanMiguel et al., 1996; Bennetzen et al., 2005; Hawkins et al., 2006; Piegu et al., 2006). Besides expanding genome size, LTR retrotransposons can have an impact on evolution of the species (Kidwell and Lisch, 2000). LTR retrotransposon insertions tend to form nested clusters (SanMiguel and Bennetzen, 1998), which are separated by small regions of several genes. Large nested repeat clusters consist of TE insertions inside TE sequences, expanding the repeat cluster and breaking up the sequence of the TEs found within, hindering repeat and gene annotation and increasing the difficulty of assembly. However, full sequence completion of the repetitive regions can be of great benefit to understanding the evolutionary history of the maize genome. LTR retrotransposons can provide an estimated time since insertion by calculating the divergence of their LTRs (Kimura, 1980; Ma and Bennetzen, 2004), and carefully sequenced assemblies of nested repeat clusters can help to illustrate their expansion, proliferation, and evolution across the genome (Kronmiller and Wise, 2008).Previous studies of large contiguous regions of maize have provided a general view of the landscape of the genome. Unfinished sequence totaling 7.8 Mb from chromosome 1 and 6.6 Mb from chromosome 9 shows a gene density of one gene per 33 and 27 kb, respectively (Bruggmann et al., 2006). BAC contigs ranging in size from 126 to 405 kb show a gene density of one gene per 19 kb and genes found in small groups between large repeat clusters (Brunner et al., 2005). Genome-wide analysis of maize BACs has painted a different picture: while gene density of 100 random BACs at one gene per 44 kb was similar to the above results, genes were not observed in tight clusters (Haberer et al., 2005). When investigating gene-specific areas of maize, this dichotomy of gene density is also seen. Analysis of gene-rich regions such as the 22-kd α-zein gene family on maize chromosome 4 reveals a high density of genes, with one gene observed per 10 kb over 346 kb (Song et al., 2001). The Adh1 locus on maize chromosome 1 contains two genes across 280 kb, or one gene per 140 kb. Perhaps the only message learned here is that the gene density across the maize genome varies to a great degree, and large contiguous sequenced regions can begin to capture the true diversity of maize chromosome architecture.In order to characterize large contiguous regions of maize sequence, we identified and sequenced two B73 BAC contigs from the centromeric region of chromosome 3. These contigs of 961 and 594 kb correspond to contigs 117 and 119, respectively, on maize WebFPC (Wei et al., 2007) and span regions associated with the rf1 (for restorer of fertility1) locus for Texas (T) cytoplasmic male sterility (cmsT; Duvick et al., 1961; Wise et al., 1996). As a foundation for the isolation of the Rf1 locus, four rf1 male-sterile mutants were recovered from a screen of 123,500 flowering plants (Wise et al., 1996). A 5.5-kb Mu1-hybridizing EcoRI restriction fragment was identified that cosegregated with the rf1-m3207 allele. Sequences from this fragment were hybridized to a Rf1 cDNA library, and probes designed from the identified cDNA, p6140-1 (Wise et al., 1999), were found to cosegregate with the rf1 locus in a recombinant population selected from over 10,000 progeny.Using probes designed off the 5.5-kb cosegregating restriction fragment and the p6140-1 cDNA, we have identified two BAC contigs spanning the rf1 locus. Sixteen BACs were sequenced to completion to provide high-quality finished sequence. Here, we present two methods for computational finishing of highly repetitive grass genomes, which were successfully utilized to close 11 TE-induced gaps. Sixteen nested repeat clusters were found, each spanning as much as 155 kb and containing a variety of LTR retrotransposon types and ages of insertion. Genes are found tightly clustered, showing a density rate of one gene per 16 kb within gene islands. Finally, comparative analysis with rice (Oryza sativa) and sorghum (Sorghum bicolor) shows that while many genes are retained across all three species, genes have both been lost and translocated across the genomes.  相似文献   
92.
93.
We have characterized a simplified method to determine the relative thermal stability of single-chain antibodies by following the irreversible denaturation of scFv fusions on the surface of yeast by flow cytometry. The method was highly reproducible and correlated well with other methods used to monitor thermal denaturation of the soluble proteins. We found a range of thermal stabilities for wild-type single-chain antibodies with half-maximum denaturation temperatures between 43 and 61 degrees C. The ability to quantitate thermal stability of antibodies or other proteins that are immobilized on the surface of yeast allows rapid comparisons of primary structural information with stability. Thermal denaturation could be a useful parameter to consider in the choice of scFv fragments for various applications.  相似文献   
94.
Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10–20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker’s sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.  相似文献   
95.
To gain better insight into how small-scale disturbances might affect ecological processes, such as the maintenance of plant species diversity, we conducted a two-year study characterizing spatio-temporal patterns of gopher mound production on a tallgrass prairie remnant located at Anderson Prairie, Iowa. USA. The locations of all newly produced gopher mounds were mapped on two 80 × 80 m permanent plots. We used these data to characterize spatio-temporal patterns of mound production across a range of scales. We found that mound production was highly clustered at scales of < 8 m over short periods of time (< 2 weeks), but shifted in location over a 3–4 weeks time period, resulting in a clustered pattern at scales of < 20 m over longer time periods (up to the 2 yr of the study). We also found that patterns of mound production at intermediate spatial scales (> 20 m) remained fairly static over time, although they differed significantly from site to site. The results of this study suggest that small-scale patterns of variability in mound production may increase habitat variability over very short spatial scales, possibly providing a mechanism that can enhance the development and maintenance of species diversity.  相似文献   
96.
A prior laboratory study found that when wearing a weight transfer device in the stooped posture, trunk flexions were reduced, and subjects who did not experience flexion–relaxation of the erector spinae had reduced back muscle activity. Whole-body musculoskeletal models, which included individual passive torso stiffness and anthropometry, were implemented to predict loads in the passive tissues of the back and the leg joints. Results predicted that when wearing the device in the stooped posture, compression and shear forces at the L5–S1 level were reduced by 13% and 12% respectively. Internal loads in the leg joints were reduced between 10% and 31%. Much of the reduction in joint loads may be a result of the device’s ability to limit torso flexion during stoop, rather than a transferring of load. While these results show possible benefit in the short-term, further study is needed on the long-term effects to determine if the device is an effective intervention for those who use the stooped posture routinely.  相似文献   
97.
Rotenone is a widely used pesticide that induces Parkinson’s disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.  相似文献   
98.
99.
There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment). Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.  相似文献   
100.
Single-cell network profiling (SCNP) data generated from multi-parametric flow cytometry analysis of bone marrow (BM) and peripheral blood (PB) samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP) for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]). SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57) and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53). Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP. Five DXSCNP classifiers were developed on the SWOG Training set and tested for prediction accuracy in an independent BM verification sample set (N = 24) from ECOG AML trials to select the final classifier, which was a significant predictor of CR/CRi (area under the receiver operating characteristic curve AUROC = 0.76, p = 0.01). The selected classifier was then validated in the SWOG BM Validation Set (AUROC = 0.72, p = 0.02). Importantly, a classifier developed using only clinical and molecular inputs from the same sample set (DXCLINICAL2) lacked prediction accuracy: AUROC = 0.61 (p = 0.18) in the BM Verification Set and 0.53 (p = 0.38) in the BM Validation Set. Notably, the DXSCNP classifier was still significant in predicting response in the BM Validation Analysis Set after controlling for DXCLINICAL2 (p = 0.03), showing that DXSCNP provides information that is independent from that provided by currently used prognostic markers. Taken together, these data show that the proteomic classifier may provide prognostic information relevant to treatment planning beyond genetic mutations and traditional prognostic factors in elderly AML.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号