排序方式: 共有182条查询结果,搜索用时 0 毫秒
181.
Sndor Cssz Bernhard Seifert Istvn Mik Brendon E. Boudinot Marek L. Borowiec Brian L. Fisher Matthew Prebus Jayanthi Puniamoorthy Jean‐Claude Rakotonirina Nicole Rasoamanana Roland Schultz Carolyn Trietsch Jonah M. Ulmer Zoltn Elek 《Ecology and evolution》2021,11(1):547-559
- Morphometric research is being applied to a growing number and variety of organisms. Discoveries achieved via morphometric approaches are often considered highly transferable, in contrast to the tacit and idiosyncratic interpretation of discrete character states. The reliability of morphometric workflows in insect systematics has never been a subject of focused research, but such studies are sorely needed. In this paper, we assess the reproducibility of morphometric studies of ants where the mode of data collection is a shared routine.
- We compared datasets generated by eleven independent gaugers, that is, collaborators, who measured 21 continuous morphometric traits on the same pool of individuals according to the same protocol. The gaugers possessed a wide range of morphometric skills, had varying expertise among insect groups, and differed in their facility with measuring equipment. We used intraclass correlation coefficients (ICC) to calculate repeatability and reproducibility values (i.e., intra‐ and intergauger agreements), and we performed a multivariate permutational multivariate analysis of variance (PERMANOVA) using the Morosita index of dissimilarity with 9,999 iterations.
- The calculated average measure of intraclass correlation coefficients of different gaugers ranged from R = 0.784 to R = 0.9897 and a significant correlation was found between the repeatability and the morphometric skills of gaugers (p = 0.016). There was no significant association with the magnification of the equipment in the case of these rather small ants. The intergauger agreement, that is the reproducibility, varied between R = 0.872 and R = 0.471 (mean R = 0.690), but all gaugers arrived at the same two‐species conclusion. A PERMANOVA test revealed no significant gauger effect on species identity (R2 = 0.69, p = 0.58).
- Our findings show that morphometric studies are reproducible when observers follow the standard protocol; hence, morphometric findings are widely transferable and will remain a valuable data source for alpha taxonomy.
182.
Brooke Howard-Parker Brendon White Halvor M. Halvorson Michelle A. Evans-White 《Freshwater Biology》2020,65(7):1189-1199
- Environmental factors such as nutrient and light availability may play important roles in determining the magnitude and direction of microbial priming and detrital decomposition and, therefore, the relative importance of microbial priming in carbon (C) dynamics in freshwater ecosystems.
- We integrated light availability with an existing conceptual model predicting the magnitude of the priming effect (PE) along a dissolved nutrient gradient (i.e. nutrient PE model). Our modified light-nutrient PE model hypothesises how light may mediate priming at any given nutrient concentration and provides a calculation method for quantitative PE values (i.e. light effect size at a given nutrient concentration).
- We used recirculating stream mesocosms with Quercus stellata (post oak) leaf litter as an organic matter (OM) substrate in a 150-day experiment to test our model predictions. We manipulated light levels [ambient (full light), shaded (c. 19% of ambient)] and phosphorus (P) concentration (10, 100, 500 µg PO4-P/L) in a fully factorial design. We also supplied all mesocosms with 500 µg/L dissolved inorganic nitrogen. Microbial biomass, water column dissolved organic C, and leaf litter dry mass and recalcitrant OM [i.e. the fibre (cellulose + lignin) component of post oak substrate] were measured. Recalcitrant OM (ROM) k-rates (day−1) were used to calculate the light effect size within P treatments as a log response ratio (ln[ambient k-rate/shade k-rate]) to ascertain PE magnitude and direction (positive or negative).
- Light was an important driver of dissolved organic C, a potential source of additional labile organic matter essential for priming heterotrophic microbes. There were weak PEs in total leaf litter dry mass remaining, but PEs were more pronounced in leaf litter ROM remaining. The strongest positive PEs (specific to litter ROM pools) occur in the highest P treatment, presumably due to a change in which nutrient, nitrogen versus P, was a limiting factor for microbes based on nutrient ratios rather than P concentration alone. These results illustrate the importance of considering light levels, nutrient ratios (rather than individual nutrients), and detrital ROM components in further PE model development.