首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1826篇
  免费   175篇
  2023年   10篇
  2022年   18篇
  2021年   51篇
  2020年   39篇
  2019年   34篇
  2018年   47篇
  2017年   34篇
  2016年   68篇
  2015年   99篇
  2014年   116篇
  2013年   135篇
  2012年   155篇
  2011年   140篇
  2010年   98篇
  2009年   85篇
  2008年   119篇
  2007年   104篇
  2006年   95篇
  2005年   100篇
  2004年   80篇
  2003年   59篇
  2002年   58篇
  2001年   28篇
  2000年   9篇
  1999年   11篇
  1998年   17篇
  1997年   19篇
  1996年   20篇
  1995年   13篇
  1994年   7篇
  1993年   12篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   10篇
  1986年   9篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   16篇
  1981年   6篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1965年   3篇
  1963年   2篇
  1961年   3篇
  1960年   3篇
排序方式: 共有2001条查询结果,搜索用时 15 毫秒
81.
The purpose of this study was to assess the stability of protein formulations using a device designed to generate defined, quantifiable levels of shear in the presence of a solid-liquid interface. The device, based on a rotating disk, produced shear strain rates of up to 3.4 x 10(4) s(-1) (at 250 rps) and was designed to exclude air-liquid interfaces and enable temperature to be controlled. Computational fluid dynamics (CFD) was used to study the fluid flow patterns within the device and to determine the shear strain rate (s(-1)) at a range of disk speeds. The device was then used to study the effect on a monoclonal IgG4 of high levels of shear at the solid-liquid interface. Monomeric antibody concentration and aggregation of the protein in solution were monitored by gel permeation HPLC and turbidity at 350 nm. High shear strain rates were found to cause significant levels of protein aggregation and precipitation with reduction of protein monomer following first-order kinetics. Monomer reduction rate was determined for a range of disk speeds and found to have a nonlinear relationship with shear strain rate, indicating the importance of identifying and minimizing such environments during processing.  相似文献   
82.
Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil‐ and host‐dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant‐associated microbes.  相似文献   
83.
The Cape Gannet Morus capensis is one of several seabird species endemic to the Benguela upwelling ecosystem (BUS) but whose population has recently decreased, leading to an unfavourable IUCN Red List assessment. Application of ‘JARA’ (‘Just Another Red-List Assessment,’ a Bayesian state-space tool used for IUCN Red List assessments) to updated information on the areas occupied by Cape Gannets and the nest densities of breeding birds at their six colonies, suggested that the species should be classified as Vulnerable. However, the rate of decrease of Cape Gannets in their most-recent generation exceeded that of the previous generation, primarily as a result of large decreases at Bird Island, Lambert’s Bay, and Malgas Island, off South Africa’s west coast (the western part of their range). Since the 1960s, there has been an ongoing redistribution of the species from northwest to southeast around southern Africa, and ~70% of the population now occurs on the south coast of South Africa, at Bird Island in Algoa Bay, on the eastern border of the BUS. Recruitment rather than adult survival may be limiting the present population; however, information on the seabird’s demographic parameters and mortality in fisheries is lacking for colonies in the northern part of the BUS. Presently, major threats to Cape Gannet include: substantially decreased availability of their preferred prey in the west; heavy mortalities of eggs, chicks and fledglings at and around colonies, inflicted by Cape Fur Seals Arctocephalus pusillus and other seabirds; substantial disturbance at colonies caused by Cape Fur Seals attacking adult gannets ashore; oiling; and disease.  相似文献   
84.
85.
86.
Much of the ADP-Glc required for starch synthesis in the plastids of cereal endosperm is synthesized in the cytosol and transported across the plastid envelope. To provide information on the nature and role of the plastidial ADP-Glc transporter in barley (Hordeum vulgare), we screened a collection of low-starch mutants for lines with abnormally high levels of ADP-Glc in the developing endosperm. Three independent mutants were discovered, all of which carried mutations at the lys5 locus. Plastids isolated from the lys5 mutants were able to synthesize starch at normal rates from Glc-1-P but not from ADP-Glc, suggesting a specific lesion in the transport of ADP-Glc across the plastid envelope. The major plastidial envelope protein was purified, and its sequence showed it to be homologous to the maize (Zea mays) ADP-Glc transporter BRITTLE1. The gene encoding this protein in barley, Hv.Nst1, was cloned, sequenced, and mapped. Like lys5, Hv.Nst1 lies on chromosome 6(6H), and all three of the lys5 alleles that were examined were shown to carry lesions in Hv.Nst1. Two of the identified mutations in Hv.Nst1 lead to amino acid substitutions in a domain that is conserved in all members of the family of carrier proteins to which Hv.NST1 belongs. This strongly suggests that Hv.Nst1 lies at the Lys5 locus and encodes a plastidial ADP-Glc transporter. The low-starch phenotype of the lys5 mutants shows that the ADP-Glc transporter is required for normal rates of starch synthesis. This work on Hv.NST1, together with the earlier work on BRITTLE1, suggests that homologous transporters are probably present in the endosperm of all cereals.  相似文献   
87.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   
88.
Mutations in the glomulin gene result in dominantly inherited vascular lesions of the skin known as glomuvenous malformations (GVMs). These lesions are histologically distinguished by their distended vein-like channels containing characteristic 'glomus cells', which appear to be incompletely or improperly differentiated vascular smooth muscle cells (VSMCs). The function of glomulin is currently unknown. We studied glomulin expression during murine development (E9.5 days post-coitum until adulthood) by non-radioactive in situ hybridization. Glomulin was first detected at E10.5 dpc in cardiac outflow tracts. Later, it showed strong expression in VSMCs as well as a limited expression in the perichondrium. At E11.5-14.5 dpc glomulin RNA was most abundant in the walls of the large vessels. At E16.5 dpc expression was also detectable in smaller arteries and veins. The high expression of glomulin in murine vasculature suggests an important role for glomulin in blood vessel development and/or maintenance, which is supported by the vascular phenotype seen in GVM patients with mutations in this gene.  相似文献   
89.
A software algorithm has been developed to investigate the folding process in B-DNA structures in vacuum under a simple and accurate force field. This algorithm models linear double stranded B-DNA sequences based on a local, sequential minimization procedure. The original B-DNA structures were modeled using initial nucleotide structures taken from the Brookhaven database. The models contain information at the atomic level allowing one to investigate as accurately as possible the structure and characteristics of the resulting DNA structures. A variety of DNA sequences and sizes were investigated containing coding and non-coding, random and real, homogeneous or heterogeneous sequences in the range of 2 to 40 base pairs. The force field contains terms such as angle bend, Lennard-Jones, electrostatic interactions and hydrogen bonding which are set up using the Dreiding II force field and defined to account for the helical parameters such as twist, tilt and rise. A close comparison was made between this local minimization algorithm and a global one (previously published) in order to find out advantages and disadvantages of the different methods. From the comparison, this algorithm gives better and faster results than the previous method, allowing one to minimize larger DNA segments. DNA segments with a length of 40 bases need approximately 4 h, while 2.5 weeks are needed with the previous method. After each minimization the angles between phosphate–oxygen-carbon A1, the oxygen–phosphate–oxygen A2 and the average helical twists were calculated. From the generated fragments it was found that the bond angles are A1=150°±2°and A2=130°±10°, while the helical twist is 36.6°±2° in the A strand and A1=150°±6° and A2=130±6° with helical twist 39.6°±2° in the B strand for the DNA segment with the same sequence as the Dickerson dodecamer.Figure The final minimized DNA segment of the Dickerson dodecamer sequence represented by ball drawings and viewed (left) perpendicular and (right) down the helical axis  相似文献   
90.
A series of five progressively saturated C35 isoprenoids has been identified in cell-free extracts of the deep-sea methanogen Methanococcus jannaschii. Production and relative abundance of the isoprenoids were dependent on culture conditions; significant production occurred in a 16-l fermentor (12-l working volume) and a 2.5-l fermentor (2-l working volume) but could not be duplicated in serum bottles. Several factors were investigated and shown not to account for the different production levels, including medium composition, pH, and temperature. However, the interphase mass transfer rate was shown to significantly affect the production of C35 isoprenoids in a fermentor. The structures of the novel isoprenoids were confirmed by hydrogenation reactions and mass spectra of the isoprenoids. Indirect evidence based on genomics and mass spectrometry data implicates head-to-head condensation of farnesyl pyrophosphate (C15) with geranylgeranyl pyrophosphate (C20) as the mechanism for C35 synthesis.Communicated by J. WiegelB.P. Manquin and J.A. Morgan contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号