首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   179篇
  2023年   12篇
  2022年   28篇
  2021年   41篇
  2020年   20篇
  2019年   27篇
  2018年   31篇
  2017年   39篇
  2016年   56篇
  2015年   76篇
  2014年   96篇
  2013年   114篇
  2012年   149篇
  2011年   145篇
  2010年   86篇
  2009年   81篇
  2008年   108篇
  2007年   99篇
  2006年   101篇
  2005年   107篇
  2004年   113篇
  2003年   82篇
  2002年   86篇
  2001年   23篇
  2000年   16篇
  1999年   22篇
  1998年   27篇
  1997年   14篇
  1996年   21篇
  1995年   27篇
  1994年   19篇
  1993年   11篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   15篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1977年   6篇
  1975年   7篇
  1972年   7篇
  1971年   5篇
  1969年   5篇
  1967年   5篇
排序方式: 共有2069条查询结果,搜索用时 15 毫秒
171.
172.
We investigated the interaction of elevated CO2 and/or (Ozone) O3 on the occurrence and severity of aspen leaf rust (Melampsora medusae Thuem. f. sp. tremuloidae) on trembling aspen (Populus tremuloides Michx.). Furthermore, we examined the role of changes in leaf surface properties induced by elevated CO2 and/or O3 in this host–pathogen interaction. Three‐ to five‐fold increases in levels of rust infection index were found in 2 consecutive years following growing‐season‐long exposures with either O3 alone or CO2 + O3 depending on aspen clone. Examination of leaf surface properties (wax appearance, wax amount, wax chemical composition, leaf surface and wettability) suggested significant effects by O3 and CO2 + O3. We conclude that elevated O3 is altering aspen leaf surfaces in such a way that it is likely predisposing the plants to increased infection by aspen leaf rust.  相似文献   
173.
174.
175.
2-Deoxyribonolactone (L) and 2-deoxyribose (AP) are abasic sites that are produced by ionizing radiation, reactive oxygen species and a variety of DNA damaging agents. The biological processing of the AP site has been examined in the yeast Saccharomyces cerevisiae. However, nothing is known about how L is processed in this organism. We determined the bypass and mutagenic specificity of DNA containing an abasic site (AP and L) or the AP analog tetrahydrofuran (F) using an oligonucleotide transformation assay. The tetrahydrofuran analog and L were bypassed at 10-fold higher frequencies than the AP lesions. Bypass frequencies of lesions were greatly reduced in the absence of Rev1 or Polζ (rev3 mutant), but were only marginally reduced in the absence of Polη (rad30 mutant). Deoxycytidine was the preferred nucleotide inserted opposite an AP site whereas dA and dC were inserted at equal frequencies opposite F and L sites. In the rev1 and rev3 strains, dA was the predominant nucleotide inserted opposite these lesions. Overall, we conclude that both Rev1 and Polζ are required for the efficient bypass of abasic sites in yeast.  相似文献   
176.
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.  相似文献   
177.
We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes acting in the yeast early secretory pathway. Hierarchical clustering, together with novel analytical strategies and experimental verification, revealed or clarified the role of many proteins involved in extensively studied processes such as sphingolipid metabolism and retention of HDEL proteins. At a broader level, analysis of the E-MAP delineated pathway organization and components of physical complexes and illustrated the interconnection between the various secretory processes. Extension of this strategy to other logically connected gene subsets in yeast and higher eukaryotes should provide critical insights into the functional/organizational principles of biological systems.  相似文献   
178.
Bass BL  Hellwig S  Hundley HA 《Cell》2005,123(2):181-183
In this issue of Cell, Prasanth et al. (2005) provide evidence that an inosine-containing RNA that is normally retained in the nucleus is cleaved within its 3' untranslated region following cellular stress. It is then transported to the cytoplasm and translated into protein. These findings suggest that the nucleus may store RNAs destined for translation that then can be released, as needed, in response to specific cellular signals.  相似文献   
179.
Species of Botryosphaeria are among the most serious pathogens that affect mango trees and fruit. Several species occur on mangoes, and these are identified mainly on the morphology of the anamorphs. Common taxa include Dothiorella dominicana, D. mangiferae (= Natrassia mangiferae), D. aromatica and an unidentified species, Dothiorella 'long'. The genus name Dothiorella, however, is acknowledged as a synonym of Diplodia. This study aimed to characterize and name the Botryosphaeria spp. associated with disease symptoms on mangoes. To achieve this isolates representing all four Dothiorella spp. mentioned above were compared with the anamorphs of known Botryosphaeria spp., based on conidial morphology and DNA sequence data. Two genomic regions were analyzed, namely the ITS rDNA and beta-tubulin regions. The morphological and molecular results confirmed that the fungi previously identified from mango as species of Dothiorella belong to Fusicoccum. Dothiorella dominicana isolates were identical to isolates of F. parvum (teleomorph = B. parva). A new epithet, namely F. mangiferum, is proposed for isolates previously treated as D. mangiferae or N. mangiferae. Isolates of D. aromatica were identified as F. aesculi (teleomorph = B. dothidea). A fourth Fusicoccum sp. also was identified as those isolates previously known as Dothiorella 'long'. A key is provided to distinguish these species based on anamorph morphology in culture. This study provides a basis for the identification of Botryosphaeria species from mango, which is important for disease control and to uphold quarantine regulations.  相似文献   
180.
Previous studies from our laboratory have revealed that esterification/amidation of the carboxylic acid moiety in the nonsteroidal anti-inflammatory drug, indomethacin, generates potent and selective COX-2 inhibitors. In the present study, a series of reverse ester/amide derivatives were synthesized and evaluated as selective COX-2 inhibitors. Most of the reverse esters/amides displayed time-dependent COX-2 inhibition with IC50 values in the low nanomolar range. Replacement of the 4-chlorobenzoyl group on the indole nitrogen with a 4-bromobenzyl moiety resulted in compounds that retained selective COX-2 inhibitory potency. In addition to inhibiting COX-2 activity in vitro, the reverse esters/amides also inhibited COX-2 activity in the mouse macrophage-like cell line, RAW264.7. Overall, this strategy broadens the scope of our previous methodology of neutralizing the carboxylic acid group in NSAIDs as a means of generating COX-2-selective inhibitors and is potentially applicable to other NSAIDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号