首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   51篇
  467篇
  2022年   5篇
  2021年   14篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   8篇
  2015年   13篇
  2014年   14篇
  2013年   9篇
  2012年   25篇
  2011年   25篇
  2010年   12篇
  2009年   13篇
  2008年   12篇
  2007年   25篇
  2006年   14篇
  2005年   13篇
  2004年   24篇
  2003年   13篇
  2002年   7篇
  2001年   10篇
  2000年   10篇
  1999年   11篇
  1998年   15篇
  1997年   6篇
  1996年   5篇
  1992年   7篇
  1991年   6篇
  1990年   7篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1982年   3篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1963年   3篇
  1879年   3篇
  1875年   5篇
  1868年   3篇
  1860年   2篇
  1859年   2篇
  1858年   5篇
  1857年   7篇
  1856年   7篇
  1855年   5篇
  1854年   7篇
  1853年   6篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
61.
62.
The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγnull mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines.  相似文献   
63.
An intriguing recent study examines the role of miR-1202, a glutamate receptor regulating microRNA, in regulating major depressive disorder.  相似文献   
64.
Membrane-type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease that regulates ECM degradation, proMMP-2 activation, and varied cellular processes including migration and viability. MT1-MMP is believed to be a central mediator of tumourigenesis whose role is dictated by its functionally distinct protein domains. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain, exemplifying diverse regulatory functions. To further our understanding of the multifunctional contributions of MT1-MMP to cellular processes, we overexpressed cytoplasmic domain altered constructs in MCF-7 breast cancer cells and analyzed migration and viability in 2D culture conditions, morphology in 3D Matrigel culture, and tumorigenic ability in vivo. We found that the cytoplasmic domain was not needed for MT1-MMP mediated migration promotion, but was necessary to maintain viability during serum depravation in 2D culture. Similarly, during 3D Matrigel culture the cytoplasmic domain of MT1-MMP was not needed to initiate a protrusive phenotype, but was necessary to prevent colony blebbing when cells were serum deprived. We also tested in vivo tumorigenic potential to show that cells expressing cytoplasmic domain altered constructs demonstrated a reduced ability to vascularize tumours. These results suggest that the cytoplasmic domain regulates MT1-MMP function in a manner required for cell survival, but is dispensable for cell migration.  相似文献   
65.
The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct and of the full-length GluR2 receptor. (S)-4-AHCP binds with a glutamate-like binding mode and the ligand adopts two different conformations. The K(i) of (S)-4-AHCP at GluR2-S1S2J was determined to be 185 +/- 29 nM and at full-length GluR2(R)o it was 175 +/- 8 nM. (S)-4-AHCP appears to elicit partial agonism at GluR2 by inducing an intermediate degree of domain closure (17 degrees). Also, functionally (S)-4-AHCP has an efficacy of 0.38 at GluR2(Q)i, relative to (S)-glutamate. The proximity of bound (S)-4-AHCP to domain D2 prevents full D1-D2 domain closure, which is limited by steric repulsion, especially between Leu704 and the ligand.  相似文献   
66.
67.
Zebrafish acquire the ability for fast swimming early in development. The motility mutant accordion (acc) undergoes exaggerated and prolonged contractions on both sides of the body, interfering with the acquisition of patterned swimming responses. Our whole cell recordings from muscle indicate that the defect is not manifested in neuromuscular transmission. However, imaging of skeletal muscle of larval acc reveals greatly prolonged calcium transients and associated contractions in response to depolarization. Positional cloning of acc identified a serca mutation as the cause of the acc phenotype. SERCA is a sarcoplasmic reticulum transmembrane protein in skeletal muscle that mediates calcium re-uptake from the myoplasm. The mutation in SERCA, a serine to phenylalanine substitution, is likely to result in compromised protein function that accounts for the observed phenotype. Indeed, direct evidence that mutant SERCA causes the motility dysfunction was provided by the finding that wild type fish injected with an antisense morpholino directed against serca, exhibited accordion-like contractions and impaired swimming. We conclude that the motility dysfunction in embryonic and larval accordion zebrafish stems directly from defective calcium transport in skeletal muscle rather than defective CNS drive.  相似文献   
68.
Virus-specific CD8 T cells after clearance of infection reduce their number in lymphoid organs by apoptotic death and by migration into peripheral tissues. During and after infection, many lymphocytic choriomeningitis virus (LCMV)-specific CD8 T cells in lymphoid but not peripheral tissues are in a preapoptotic state, as detected by the early apoptosis marker annexin V. In this report, we investigated the significance of this preapoptotic state and how it may be influenced by viral epitope specificity. Stimulation with anti-CD3 or IL-2 in vitro postponed DNA fragmentation in annexin V+ cells, but adoptive transfer studies in vivo showed that this preapoptotic phenotype precluded the development of functional memory. CD8 T cells specific to LCMV epitopes NP396 and gp33 differed in their preapoptotic state, with NP396-specific T cells binding more annexin V than gp33-specific T cells. These epitope- and tissue-dependent differences were seen in primary, memory, and secondary responses and in mice receiving different displays of Ag by infection with LCMV strains of different tropisms or by infection with vaccinia virus recombinants expressing LCMV proteins. Thus, the epitope-dependent differences in apoptosis were independent of virus tropisms, duration of Ag exposure, and competition within APCs, and were an intrinsic property of the epitope. The tissue-dependent and epitope-dependent preapoptotic state correlated with reduced expression of IL-7Ralpha.  相似文献   
69.
Fast and slow skeletal muscle types are readily distinguished in larval zebrafish on the basis of differences in location and orientation. Additionally, both muscle types are compact, rendering them amenable to in vivo patch clamp study of synaptic function. Slow muscle mediates rhythmic swimming, but it does so purely through synaptic drive, as these cells are unable to generate action potentials. Our patch clamp recordings from muscle pairs of zebrafish reveal a network of electrical coupling in slow muscle that allows sharing of synaptic current within and between segmental boundaries of the tail. The synaptic current exhibits slow kinetics (tau(decay) approximately 4 ms), which further facilitates passage through the low pass filter, a consequence of the electrically coupled network. In contrast to slow muscle, fast skeletal muscle generates action potentials to mediate the initial rapid component of the escape response. The combination of very weak electrical coupling and synaptic kinetics (tau(decay) <1 ms) too fast for the network low pass filter minimizes intercellular sharing of synaptic current in fast muscle. These differences between muscle types provide insights into the physiological role(s) of electrical coupling in skeletal muscle. First, intrasegmental coupling among slow muscle cells allows effective transfer of synaptic currents within tail segments, thereby minimizing differences in synaptic depolarization. Second, a fixed intersegmental delay in synaptic current transit, resulting from the low pass filter properties of the slow muscle network, helps coordinate the rostral-caudal wave of contraction.  相似文献   
70.
In both humans and NOD mice, particular combinations of MHC genes provide the primary risk factor for development of the autoreactive T cell responses causing type 1 diabetes (T1D). Conversely, other MHC variants can confer dominant T1D resistance, and previous studies in NOD mice have shown their expression on hemopoietically derived APC is sufficient to induce disease protection. Although allogeneic hemopoietic chimerization can clearly provide a means for blocking T1D development, its clinical use for this purpose has been obviated by a requirement to precondition the host with what would be a lethal irradiation dose if bone marrow engraftment is not successful. There have been reports in which T1D-protective allogeneic hemopoietic chimerization was established in NOD mice that were preconditioned by protocols not including a lethal dose of irradiation. In most of these studies, virtually all the hemopoietic cells in the NOD recipients eventually converted to donor type. We now report that a concern about such full allogeneic chimeras is that they are severely immunocompromised potentially because their T cells are positively selected in the thymus by MHC molecules differing from those expressed by the APC available in the periphery to activate T cell effector functions. However, this undesirable side effect of generalized immunosuppression is obviated by a new protocol that establishes without a lethal preconditioning component, a stable state of mixed allogeneic hemopoietic chimerism sufficient to inhibit T1D development and also induce donor-specific tolerance in NOD recipients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号