首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   58篇
  1048篇
  2024年   2篇
  2023年   7篇
  2022年   14篇
  2021年   25篇
  2020年   15篇
  2019年   18篇
  2018年   24篇
  2017年   24篇
  2016年   35篇
  2015年   65篇
  2014年   72篇
  2013年   72篇
  2012年   97篇
  2011年   95篇
  2010年   56篇
  2009年   47篇
  2008年   70篇
  2007年   59篇
  2006年   52篇
  2005年   38篇
  2004年   31篇
  2003年   41篇
  2002年   31篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1048条查询结果,搜索用时 31 毫秒
61.

Background

Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP−/−Vim−/−) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP−/−Vim−/− mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown.

Methodology/Principal Findings

We subjected GFAP−/−Vim−/− and wild-type mice to unilateral hypoxia-ischemia (HI) at postnatal day 9 (P9). Bromodeoxyuridine (BrdU; 25 mg/kg) was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP−/−Vim−/− and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP−/−Vim−/− and wild-type mice. In wild-type mice, the number of S100+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0±50.1 vs. 85.6±34.0, p<0.05). In the GFAP−/−Vim−/− mice, the number of S100+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP−/−Vim−/− mice showed an increase in NeuN+BrdU+ (surviving newly born) neurons in the ischemic cortex compared to wild-type mice (6.7±7.7; n = 29 versus 2.9±3.6; n = 28, respectively, p<0.05), but a comparable number of S100+BrdU+ (surviving newly born) astrocytes.

Conclusions/Significance

Our results suggest that attenuation of reactive gliosis in the developing brain does not affect the hemisphere or infarct volume after HI, but increases the number of surviving newborn neurons.  相似文献   
62.
63.
Gangliosides are major cell-surface determinants in the central nervous system (CNS) of vertebrates, found both in neuronal and glial cell membranes. Together with cholesterol and glycosylphosphatidylinositol (GPI) - anchored proteins, gangliosides are involved in organization of plasma membrane microdomains. Based on biochemical studies, frog brain was previously described as having low quantities of gangliosides and their distribution pattern in specific brain regions was unknown. Using highly specific monoclonal antibodies generated against four major brain gangliosides (GM1, GD1a, GD1b and GT1b), we examined the distribution of these molecules in CNS of four different species of frogs (Rana esculenta, Rana temporaria, Bufo bufo and Bufo viridis). We also studied the distribution of myelin- associated glycoprotein (MAG), an inhibitor of axonal regeneration, which is a ligand for gangliosides GD1a and GT1b. Our results show that ganglioside GDla is expressed in neurons of olfactory bulb in all studied animals. In the brain of Rana sp., GD1a is expressed in the entire olfactory pathway, from olfactory bulbs to amygdala, while in Bufo sp. GD1a is restricted to the main olfactory bulb. Furthermore, we found that most of myelinated pathways in frogs express MAG, but do not express GD1a, which could be one of the reasons for better axon regeneration of neural pathways after CNS injury in amphibians in comparison to mammals.  相似文献   
64.
Neurodegenerative diseases are caused by proteinaceous aggregates, usually consisting of misfolded proteins which are often typified by a high proportion of β-sheets that accumulate in the central nervous system. These diseases, including Morbus Alzheimer, Parkinson disease and Transmissible Spongiform Encephalopathies (TSEs)—also termed prion disorders—afflict a substantial proportion of the human population and, as such, the etiology and pathogenesis of these diseases has been the focus of mounting research. Although many of these diseases arise from genetic mutations or are sporadic in nature, the possible horizontal transmissibility of neurodegenerative diseases poses a great threat to population health. In this article we discuss recent studies that suggest that the “non-transmissible” status bestowed upon Alzheimer and Parkinson diseases may need to be revised as these diseases have been successfully induced through tissue transplants. Furthermore, we highlight the importance of investigating the “natural” mechanism of prion transmission including peroral and perenteral transmission, proposed routes of gastrointestinal uptake and neuroinvasion of ingested infectious prion proteins. We examine the multitude of factors which may influence oral transmissibility and discuss the zoonotic threats that Chronic Wasting disease (CWD), Bovine Spongiform Encephalopathy (BSE) and Scrapie may pose resulting in vCJD or related disorders. In addition, we suggest that the 37 kDa/67 kDa laminin receptor on the cell surface of enterocytes, a major cell population in the intestine, may play an important role in the intestinal pathophysiology of alimentary prion infections.Key words: prion, 37 kDa/67 kDa laminin receptor, CJD, BSE, CWD, scrapie, Alzheimer disease, Parkinson disease, intestine, enterocytesMany different mechanisms exist which underlie the etiology of the numerous neurodegenerative diseases affecting the human population. Amongst the most prominent are Morbus Alzheimer, prion disorders, Parkinson disease, Chorea Huntington, frontotemporal dementia and amylotrophic lateral sclerosis. The molecular mechanisms underlying these diseases vary; however, all neurodegenerative diseases share a common feature: they are caused by protein aggregation. The only neurodegenerative diseases proven to be transmissible are prion disorders. In contrast to frontotemporal dementia, recent evidence suggests that Alzheimer and Parkinson diseases may also be transmissible. Pre-symptomatic Alzheimer disease (APP23) mice exhibited an increase in the Alzheimer phenotype when brain homogenate of autopsied human Alzheimer disease patients and older, amyloid beta- (Aβ-) laden APP23 mice was injected into their hippocampi.1 These findings suggest that the Aβ-abundant brain homogenate of Alzheimer disease patients may possess the ability to induce or supplement the overproduction of Aβ, possibly leading to the onset of Alzheimer disease.The pathological feature associated with Parkinson disease is the formation of Lewy bodies in cell bodies and neuronal processes in the brain.2 The main component of these protein aggregates is α-synuclein (reviewed in ref. 2). Autopsies of Parkinson disease patients revealed that Lewy bodies had formed on healthy embryonic neurons that had been grafted onto the brain tissue of the patients several years before (prior to said examination).35 It may thus be proposed that α-synuclein transmission is possible from diseased to healthy neurons, suggesting that Parkinson disease may be transmissible from a Parkinson disease patient to a healthy individual. These findings imply that Alzheimer and Parkinson diseases may be transmissible through tissue transplants and the use of contaminated surgical tools.6Prion disorders, also termed Transmissible Spongiform Encephalopathies (TSEs), are fatal neurodegenerative diseases that affect the central nervous system (CNS) of multiple animal species. In lieu of the social, economic and political ramifications of such infections, as well as the possible intra- and interspecies transmissibility of such disorders, various routes of experimental transmission have been investigated including intracerebral, intraperitoneal, intraventricular, intraocular, intraspinal and subcutaneous injections (reviewed in ref. 79). However, such routes of transmission are not representative of the “natural” mechanism as the majority of prion disorders are contracted through ingestion of infectious prion (PrPSc) containing material. Thus, the peroral and perenteral prion transmission is of greatest consequence with respect to TSE disease establishment. Moreover, the presence of PrPSc in the buccal cavity of scrapie-infected sheep10 (reviewed in ref. 11) and the possible horizontal transfer as a result hereof, as may be similarly proposed for animals suffering from other TSEs, may further contribute to the oral transmissibility of TSEs.A number of model systems have been employed to study TSE transmissibility. Owing to ethical constraints, TSE transmissibility to humans via the oral route may not be directly investigated and as a result hereof, alternative model systems are needed. These may include the use of transgenic mice, cell lines which are permissive to infection12 and experimental animals such as sheep, calves, goats, minks, ferrets and non-human primates (reviewed in ref. 9).Intestinal entry of PrPSc has been proposed to occur via two pathways, the membranous (M) cell-dependent and M cell-independent pathways (Fig. 1).13,14 The former involves endocytic M (microfold)-cells, which cover the intestinal lymphoid follicles (Peyer''s patches)14 and may take up prions and thereby facilitate the translocation of these proteins across the intestinal epithelium into the lymphoid tissues (reviewed in ref. 9) as has been demonstrated in a cellular model.13 Following such uptake by the M cells, the prions may subsequently pass to the dendritic cells and follicular dendritic cells (FDCs) (Fig. 1), which allow for prion transport to the mesenteric lymph nodes and replication, respectively.15 The prion proteins may subsequently gain access to the enteric nervous system (ENS) and ultimately the central nervous system (CNS).15Open in a separate windowFigure 1Proposed routes of gastrointestinal entry of ingested infectious prions (PrPSc) as well as possible pathways of amplification and transport to the central nervous system.However, prion intestinal translocation has been observed in the absence of M cells and has been demonstrated to be as a result of the action of polar, 37 kDa/67 kDa LRP/LR (non-integrin laminin receptor; reviewed in ref. 1618) expressing enterocytes. Enterocytes are the major cell population of the intestinal epithelium and due to their ability to endocytose pathogens, nutrients and macromolecules,19 it has been proposed that these cells may represent a major entry site for alimentary prions (Fig. 1).Since enterocyte prion uptake has been demonstrated to be dependent on the presence of LRP/LR on the apical brush border of the cells,14,20 the interaction between varying prion protein strains and the receptor2123 may be employed as a model system to study possible oral transmissibility of prion disorders across species as well as the intestinal pathophysiology of alimentary prion infections.24 Moreover, the blockage of such interactions through the use of anti-LRP/LR specific antibodies has been reported to reduce PrPSc endocytosis19 and thus these antibodies may serve as potential therapeutics to prevent infectious prion internalization and thereby prevent prion infections. It must be emphasized that the adhesion of prion proteins to cells is not solely dependent on the LRP/LR-PrPSc interactions;24 however, this interaction is of importance with regards to internalization and subsequent pathogenesis.We applied the aforementioned cell model to study the possible oral transmission of PrPBSE, PrPCWD and ovine PrPSc to cervids, cattle, swine and humans.24 The direct transmission of the aforementioned animal prion disorders to humans as a result of dietary exposure and the possible establishment of zoonotic diseases is of great public concern. It must however be emphasized that the study investigated the co-localization of LRP/LR and various prion strains and not the actual internalization process.PrPBSE was shown to co-localize with LRP/LR on human enterocytes24, thereby suggesting that PrPBSE is transmissible to humans via the oral route which is widely accepted as the manner by which variant CJD originated. This suspicion was previously investigated using a macaque model, which was successfully perorally infected by BSE-contaminated material and subsequently lead to the development of a prion disorder that resembles vCJD.25 These results, due to the evolutionary relatedness between macaques and humans, allowed researchers to confirm the oral transmissibility of PrPBSE to humans. PrPBSE may also potentially lead to prion disorder establishment in swine,24 livestock of great economic and social importance.The prion disorder affecting elk, mule deer and white-tailed deer is termed CWD. Cases of the disease are most prevalent in the US but are also evident in Canada and South Korea.26,27 As the infectious prion isoform is reported to be present in the blood28 and skeletal muscle,29 hunting, consumption of wild venison and contact with other animal products derived from CWD-infected elk and deer may thereby pose a public health risk. Our studies demonstrate that PrPCWD co-localizes with LRP/LR on human enterocytes24 thereby suggesting a possible oral transmissibilty of this TSE to humans. This is, however, inconsistent with results obtained during intra-cerebral inoculation of the brains and spinal cords of transgenic mice overexpressing the human cellular prion protein (PrPc),26,27 which is essential for TSE disease establishment and progression. Further, discrepancies have also been reported with respect to non-human primates, as squirrel monkeys have been successfully intracerebrally inoculated with mule-deer prion homogenates,30 while cynolmolgus macaques were resistant to infection.31 CWD has been transmitted to ferrets, minks and goats32 and as these animals may serve as domestic animals or livestock, secondary transmission from such animals to humans, through direct contact or ingestion of infected material, may be an additional risk factor that merits further scientific investigation.Ovine PrPSc co-localization with LRP/LR on human and bovine enterocytes may be indicative of the infectious agents'' ability to effect cross-species infections. The oral transmissibility of Scrapie has been confirmed in hamsters fed with sheep-scrapie-infected material.33The discrepancies with regards to the transmissibility of certain infectious prion proteins when assessed by different model systems may be due to the experimental transmission route employed. Oral exposure often results in significantly prolonged incubation times when compared to intracerebral inoculation techniques and thus failure of transgenic mice and normal experimental animals to develop disease phenotypes after being fed TSE-contaminated material may not necessarily indicate that the infection process failed.14 Apart from the route of infection, numerous other factors may influence transmission between species, including dose, PrP polymorphisms and genetic factors, the prion strain employed as well as the efficacy of prion transport to the CNS.34 The degree of homology between the PrPc protein in the animals serving as the infectious prion source and recipient has also been described as a feature limiting cross-species transmission.34 The negative results, as referred to above, obtained upon prion-protein inoculation of animal models may have resulted due to the slow rate at which the infectious prion induces conformational conversion of the endogenous PrPc in the animal cells and this in turn results in low levels of infectious prion replication and symptom development.27Furthermore, even in the event that certain prion disorders are not directly transmissible to humans, most are transmissible to at least a single species of domestic animal or livestock. The infectious agents properties may be altered in the secondary host such that it becomes transmissible to humans (reviewed in ref. 35). Thus, interspecies transmission between animals may indirectly influence human health.It is noteworthy to add that although the oral route of PrPSc transmission may result in prolonged incubation times, it may broaden the range of susceptible hosts. A common constituent of food is ferritin, a protein that is resistant to digestive enzyme hydrolysis and, due to its homology across species, it may serve as co-transporter of PrPSc and facilitate enterocyte internalization of the infectious prion.36 It may thus be proposed that prion internalization may occur via a ferritin-PrPSc complex even in the absence of co-localization between the infectious agent and LRP/LR such that many more cross-species infections (provided that the other infection factors are favorable) may be probable.37 In addition, digestive enzymes in the gastrointestinal tract facilitate PrPSc binding to the intestinal epithelium and subsequent intestinal uptake36 and thus depending on the individuals'' digestive processes, the susceptibility to infection and the rate of disease development may vary accordingly. As a result hereof, though laboratory experiments in cell-culture and animal models may render a particular prion disorder non-infectious to humans, this may not be true for all individuals.In lieu of the above statements, with particular reference to inconsistencies in reported results and the multiple factors influencing oral transmissibility of TSEs, further transmission studies are required to evaluate the zoonotic threat which CWD, BSE and Scrapie may pose through ingestion.  相似文献   
65.
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016  相似文献   
66.
Enterocytes, a major cell population of the intestinal epithelium, represent one possible barrier to the entry of prions after oral exposure. We established a cell culture system employing enterocytes from different species to study alimentary prion interaction with the 37-kDa/67-kDa laminin receptor LRP/LR. Human, bovine, porcine, ovine, and cervid enterocytes were cocultured with brain homogenates from cervid, sheep, and cattle suffering from chronic wasting disease (CWD), scrapie, and bovine spongiform encephalopathy (BSE), respectively. PrPCWD, ovine PrPSc, and PrPBSE all colocalized with LRP/LR on human enterocytes. PrPCWD failed to colocalize with LRP/LR on bovine, porcine, and ovine enterocytes. Ovine PrPSc colocalized with the receptor on bovine enterocytes, but failed to colocalize with LRP/LR on cervid and porcine enterocytes. PrPBSE failed to colocalize with the receptor on cervid and ovine enterocytes. These data suggest possible oral transmissibility of CWD and sheep scrapie to humans and may confirm the oral transmissibility of BSE to humans, resulting in zoonotic variant Creutzfeldt-Jakob disease. CWD might not be transmissible to cattle, pigs, and sheep. Sheep scrapie might have caused BSE, but may not cause transmissible spongiform encephalopathy in cervids and pigs. BSE may not be transmissible to cervids. Our data recommend the enterocyte model system for further investigations of the intestinal pathophysiology of alimentary prion infections.  相似文献   
67.
Copper fungicides and mycoinsecticides based on entomopathogenic fungi Beauveria spp. are the most common pesticides used in organic crop production systems. The in vitro effects of the copper fungicides copper oxide, copper hydroxide, copper oxychloride, copper sulphate, dicopper chloride trihydroxide and tribasic copper sulphate were investigated for mycelial growth, sporulation and conidial germination of the ATCC 74040 commercial strain of Beauveria bassiana. Mycelial growth was evaluated on potato dextrose agar plates with 100%, 75%, 50%, 25%, 12.5%, 6.25% and 0% of the recommended application rates of each fungicide at 15 and 25°C. Sporulation and conidial germination were determined at the recommended field doses of each fungicide at 25°C. All copper fungicides had fungistatic or fungicidal effects on B. bassiana that varied according to the dose. Only in two cases, copper oxide at 15°C and copper hydroxide at 25°C, at the lowest concentration of 6.5%, was mycelial growth not statistically significantly inhibited. Inhibition of mycelial growth depended both on the fungicide and its concentration, and partly on temperature. Both sporulation and conidial germination of B. bassiana were significantly inhibited by all fungicides. All fungicides inhibited the sporulation in a similar way (99.8%–100%). With the exception of copper oxychloride (inhibition, 13.6%), the other fungicides showed high detrimental effects on conidial germination (inhibition, 91.7%–100%). The fungus was strongly affected by some fungicides even at the lowest doses. The biological index used for the B. bassiana with copper fungicides ranged from 0.6 (copper sulphate) to 18.1 (copper oxychloride). Therefore, the tested fungicides were classified into the upper half of the highly toxic (T) category and are considered incompatible with the entomopathogenic fungus B. bassiana strain ATCC 74040 under in vivo experimental conditions. These results need to be further verified in vitro under both greenhouse and open-field conditions.  相似文献   
68.

Objectives

The aims of this study were to test the utility of benchtop NGS platforms for NIPT for trisomy 21 using previously published z score calculation methods and to optimize the sample preparation and data analysis with use of in silico and physical size selection methods.

Methods

Samples from 130 pregnant women were analyzed by whole genome sequencing on benchtop NGS systems Ion Torrent PGM and MiSeq. The targeted yield of 3 million raw reads on each platform was used for z score calculation. The impact of in silico and physical size selection on analytical performance of the test was studied.

Results

Using a z score value of 3 as the cut-off, 98.11% - 100% (104-106/106) specificity and 100% (24/24) sensitivity and 99.06% - 100% (105-106/106) specificity and 100% (24/24) sensitivity were observed for Ion Torrent PGM and MiSeq, respectively. After in silico based size selection both platforms reached 100% specificity and sensitivity. Following the physical size selection z scores of tested trisomic samples increased significantly—p = 0.0141 and p = 0.025 for Ion Torrent PGM and MiSeq, respectively.

Conclusions

Noninvasive prenatal testing for chromosome 21 trisomy with the utilization of benchtop NGS systems led to results equivalent to previously published studies performed on high-to-ultrahigh throughput NGS systems. The in silico size selection led to higher specificity of the test. Physical size selection performed on isolated DNA led to significant increase in z scores. The observed results could represent a basis for increasing of cost effectiveness of the test and thus help with its penetration worldwide.  相似文献   
69.
Starting from 3β-hydroxy-17-oxo-16,17-secoandrost-5-ene-16-nitrile (1), the new 16,17-secoandrostane derivatives 49 were synthesized. On the other hand, 3β-hydroxy-17-oxa-d-homoandrost-5-ene-16-one (10) yielded the new d-homo derivatives 12, 13 and 15. In vitro antiproliferative activity of selected compounds against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER−, MDA-MB-231, prostate cancer AR−, PC-3, and normal fetal lung fibroblasts, MRC-5) was evaluated. Compounds 3 and 12 showed strong antiproliferative activity against PC-3 cells, the IC50 values being 2 μM and 0.55 μM, respectively. Compounds 6 (10 μM) and 14 (9 μM) showed moderate activity against MDA-MB-231 cells. The synthesized compounds 13, 58, 10 and 1215 were not toxic to normal fetal lung fibroblasts cells, MRC-5.  相似文献   
70.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号