首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   64篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2016年   8篇
  2015年   22篇
  2014年   15篇
  2013年   14篇
  2012年   29篇
  2011年   50篇
  2010年   25篇
  2009年   25篇
  2008年   26篇
  2007年   21篇
  2006年   30篇
  2005年   26篇
  2004年   27篇
  2003年   28篇
  2002年   18篇
  2001年   26篇
  2000年   21篇
  1999年   12篇
  1998年   3篇
  1997年   12篇
  1996年   10篇
  1995年   14篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   9篇
  1990年   12篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1986年   11篇
  1985年   3篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1964年   2篇
排序方式: 共有614条查询结果,搜索用时 15 毫秒
111.
112.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C(2) groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   
113.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   
114.
The survival of a genetically-marked Aeromonas hydrophila strain was studied in water microcosms using viable counts. Aeromonas hydrophila AWWX1 was shown to survive without decline in viable counts for at least 10 d in three of four filtered-autoclaved freshwaters (surface water and groundwater) and in all examined filtered-autoclaved nutrient-poor waters (bottled spring water, Milli-Q and tap water). However, in the unfiltered waters, a rapid decrease in viable counts of Aer. hydrophila AWWX1 was observed after 1–5 d. The survival of Aer. hydrophila AWWX1 in nutrient-poor waters was compared with that of Pseudomonas fluorescens P17 and Spirillum strain NOX. Survival characteristics were organism- and water-dependent. In the filtered-autoclaved waters, viable counts of Spirillum strain NOX were ca 1 log-unit higher than for Aer. hydrophila AWWX1 and Ps. fluorescens P17. The tested strains Aer. hydrophila AWWX1 and Ps. fluorescens P17 survived 3 to 20, respectively 2 to 4 times better in the filtered-autoclaved waters compared to the unfiltered waters. Apparently, any inherent capability of these micro-organisms to adapt to low-nutrient environments was undone by the presence of the autochthonous microbiota. The present findings that Aer. hydrophila survives very poorly in several drinking waters is of utmost importance towards public health and arises questions about the mechanisms involved.  相似文献   
115.
Heterotrophic Nitrification by Arthrobacter sp   总被引:9,自引:1,他引:9  
Arthrobacter sp. isolated from sewage oxidized ammonium to hydroxylamine, a bound hydroxylamine compound, a hydroxamic acid, a substance presumed to be a primary nitro compound, nitrite, and nitrate. The concentration of free hydroxylamine-nitrogen reached 15 mug/ml. The identification of hydroxylamine was verified by mass spectrometric analysis of its benzophenone oxime derivative. The bound hydroxylamine was tentatively identified as 1-nitrosoethanol on the basis of its mass spectrum, chemical reactions, and infrared and ultraviolet spectra. Hydroxylamine formation by growing cells was relatively independent of pH, but the accumulation of nitrite was strongly favored in alkaline solutions. The formation of hydroxylamine but not nitrite was regulated by the carbon to nitrogen ratio of the medium. The hydroxamic acid was the dominant product of nitrification in iron-deficient media, but hydroxylamine, nitrite, and 1-nitrosoethanol formation was favored in iron-rich solutions. Heterotrophic nitrification by Arthrobacter sp. was not inhibited by several compounds at concentrations which totally inhibited autotrophic nitrification.  相似文献   
116.
A selection of axenic microbial strains and a variety of environmental samples were investigated with respect to the utilization of a series of natural and xenobiotic phosphonates as the sole phosphorus source for growth. Phosphonate degradation was observed only with bacteria and not with eucaryotic microorganisms. All representatives of the phosphonates examined supported bacterial growth, with the exception of methylphosphonate diethylester. Yet, distinctly different phosphonate utilization patterns were noted between phosphonate-positive strains. C-P bond cleavage by a photosynthetic bacterium is reported for the first time; growing photoheterotrophically, Rhodobacter capsulatus ATCC 23782 was able to utilize 2-aminoethylphosphonate and alkylphosphonates. Bacteria with the potential to utilize at least one of the phosphonate moieties from the xenobiotic phosphonates Dequest 2010, Dequest 2041, and Dequest 2060 were detected in all environments, with only two exceptions for Dequest 2010. Phosphonate P utilization to an extent of 94 and 97%, for Dequest 2010 and Dequest 2041, respectively, provided evidence that a complete breakdown of these compounds with respect to the C-P bond cleavage can be achieved by some bacteria. The results suggest that phosphonate-utilizing bacteria are ubiquitous, and that selected strains can degrade phosphonates that are more complex than those described previously.  相似文献   
117.
118.
Pure (single) cultures of microorganisms and mixed microbial communities (microbiomes) have been important for centuries in providing renewable energy, clean water and food products to human society and will continue to play a crucial role to pursue the Sustainable Development Goals. To use microorganisms effectively, microbial engineered processes require adequate control. Microbial communities are shaped by manageable deterministic processes, but also by stochastic processes, which can promote unforeseeable variations and adaptations. Here, we highlight the impact of stochasticity in single culture and microbiome engineering. First, we discuss the concepts and mechanisms of stochasticity in relation to microbial ecology of single cultures and microbiomes. Second, we discuss the consequences of stochasticity in relation to process performance and human health, which are reflected in key disadvantages and important opportunities. Third, we propose a suitable decision tool to deal with stochasticity in which monitoring of stochasticity and setting the boundaries of stochasticity by regulators are central aspects. Stochasticity may give rise to some risks, such as the presence of pathogens in microbiomes. We argue here that by taking the necessary precautions and through clever monitoring and interpretation, these risks can be mitigated.  相似文献   
119.
Conjugal transfer from Escherichia coli to Alcaligenes eutrophus of the A. eutrophus genes coding for plasmid-borne resistance to cadmium, cobalt, and zinc (czc genes) was investigated on agar plates and in soil samples. This czc fragment is not expressed in the donor strain, E. coli, but it is expressed in the recipient strain, A. eutrophus. Hence, expression of heavy metal resistance by cells plated on a medium containing heavy metals represents escape of the czc genes. The two plasmids into which this DNA fragment has been cloned previously and which were used in these experiments are the nonconjugative, mobilizable plasmid pDN705 and the nonconjugative, nonmobilizable plasmid pMOL149. In plate matings at 28 to 30 degrees C, the direct mobilization of pDN705 occurred at a frequency of 2.4 x 10(-2) per recipient, and the mobilization of the same plasmid by means of the IncP1 conjugative plasmids RP4 or pULB113 (present either in a third cell [triparental cross] or in the recipient strain itself [retromobilization]) occurred at average frequencies of 8 x 10(-4) and 2 x 10(-5) per recipient, respectively. The czc genes cloned into the Tra- Mob- plasmid pMOL149 were transferred at a frequency of 10(-7) to 10(-8) and only by means of plasmid pULB113. The direct mobilization of pDN705 was further investigated in sandy, sandy-loam, and clay soils. In sterile soils, transfer frequencies at 20 degrees C were highest in the sandy-loam soil (10(-5) per recipient) and were enhanced in all soils by the addition of easily metabolizable nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
120.
Gallidermin (Gdm) and epidermin (Epi) are highly homologous tetracyclic polypeptide antibiotics that are ribosomally synthesized by a Staphylococcus gallinarum strain and a Staphylococcus epidermidis strain, respectively. These antibiotics are secreted into media and are distinguished by the presence of the unusual amino acids lanthionine, 3-methyllanthionine, didehydrobutyrine, and S-(2-aminovinyl)-D-cysteine, which are formed by posttranslational modification. To study the substrate specificities of the modifying enzymes and to obtain variants that exhibit altered or new biological activities, we changed certain amino acids by performing site-specific mutagenesis with the Gdm and Epi structural genes (gdmA and epiA, respectively). S. epidermidis Tü3298/EMS6, an epiA mutant of the Epi-producing strain, was used as the expression host. This mutant synthesized Epi, Gdm, or analogs of these antibiotics when the appropriate genes were introduced on a plasmid. No Epi or Gdm analogs were isolated from the supernatant when (i) hydroxyamino acids involved in thioether amino acid formation were replaced by nonhydroxyamino acids (S3N and S19A); (ii) C residues involved in thioether bridging were deleted (delta C21, C22 and delta C22); or (iii) a ring amino acid was replaced by an amino acid having a completely different character (G10E and Y20G). A strong decrease in production was observed when S residues involved in thioether amino acid formation were replaced by T residues (S16T and S19T). A number of conservative changes at positions 6, 12, and 14 on the Gdm backbone were tolerated and led to analogs that had altered biological properties, such as enhanced antimicrobial activity (L6V) or a remarkable resistance to proteolytic degradation (A12L and Dhb14P). The T14S substitution led to simultaneous production of two Gdm species formed by incomplete posttranslational modification (dehydration) of the S-14 residue. The fully modified Dhb14Dha analog exhibited antimicrobial activity similar to that of Gdm, whereas the Dhb14S analog was less active. Both peptides were more sensitive to tryptic cleavage than Gdm was.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号