首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   17篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
51.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   
52.
Glyphosate catabolism by Pseudomonas sp. strain PG2982.   总被引:7,自引:0,他引:7       下载免费PDF全文
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues.  相似文献   
53.
The human protein NEFA (DNA binding, EF-hand, Acidic region) has previously been isolated from a KM3 cell line and immunolocalized on the plasma membrane, in the cytoplasma, and in the culture medium. Sequence analysis of a cDNA clone encoding NEFA identified a hydrophilic domain, two EF-hands, and a leucine zipper at the C- terminus. These characters are shared with nucleobindin (Nuc). In this paper we have further characterized NEFA and probed its evolutionary origins. Circular dichroism (CD) spectra of recombinant NEFA indicated a helical content of 51% and showed that the EF-hands are capable of binding Ca2+. Experiments with recombinant NEFA and synthesized peptides revealed that the leucine zipper cannot form a homodimer. The leucine zipper may allow heterodimer formation of NEFA and an unknown protein. Phylogenetic analyses suggest that this protein is derived from a four-domain EF-hand ancestor with subsequent duplications and fusions. The leucine zipper and putative DNA-binding domains of NEFA have evolved secondarily from existing EF-hand sequences. These analyses provide insights into how complex proteins may originate and trace the precursor of NEFA to the common ancestor of eukaryotes.   相似文献   
54.
We sequenced the entire control region and portions of flanking genes (tRNA(Phe), tRNA(Glu), and ND6) in the common chaffinch (Fringilla coelebs), blue chaffinch (F. teydea), brambling (F. montifringilla), and greenfinch (Carduelis chloris). In these finches the control region is similar in length (1,223-1,237 bp) and has the same flanking gene order as in other birds, and contains a putative TAS element and the highly conserved CSB-1 and F, D, and C boxes recognizable in most vertebrates. Cloverleaf-like structures associated with the TAS element at the 5' end and CSB-1 at the 3' end of the control region may be involved with the stop and start of D-loop synthesis, respectively. The pattern of nucleotide and substitution bias is similar to that in other vertebrates, and consequently the finch control region can be subdivided into a central, conserved G-rich domain (domain II) flanked by hypervariable 5'-C-rich (domain I) and 3'-AT-rich (domain III) segments. In pairwise comparisons among finch species, the central domain has unusually low transition/transversion ratios, which suggests that increased G + T content is a functional constraint, possibly for DNA primase efficiency. In finches the relative rates of evolution vary among domains according to a ratio of 4.2 (domain III) to 2.2 (domain I) to 1 (domain II), and extensively among sites within domains I and II. Domain I and III sequences are extremely useful in recovering intraspecific phylogeographic splits between populations in Africa and Europe, Madeira, and a basal lineage in Nefza, Tunisia. Domain II sequences are highly conserved, and are therefore only useful in conjunction with sequences from domains I and III in phylogenetic studies of closely related species.   相似文献   
55.
It is reported here that the rpr DNA repair gene of Serratia marcescens does not complement an Escherichia coli xth nfo AP endonuclease mutation for resistance to methyl methanesulphonate (MMS). Rather, rpr sensitized Escherichia coli wild-type, xth, and nfo strains to MMS. Also, it was found that rpr could not complement a triple tag alkA recA mutation in E. coli, indicating that there are limits to rpr complementing capabilities. It was determined that rpr gene dosage was not a factor in recA complementation. MMS sensitization of an E. coli wild-type strain, however, was directly related to rpr copy number. These data indicate that Rpr does not have an associated AP endonuclease activity, and that it is incapable of substituting for Tag I, Tag II, and RecA in a tag alkA recA background.  相似文献   
56.
Red blood cells from neonatal calves, but not from adult cows, rapidly hemolyze in buffered 300 mM solutions of a variety of nonelectrolytes and amino acids. Of these compounds, sucrose is chosen to elucidate the mechanism by which this preferential hemolysis takes place. As in other mammalian red cells, both calf and cow cells are found to be impermeable to sucrose and, in an isosmolar sucrose solution, to undergo volume shrinkage caused by the net loss of chloride ions with concomitant increase in intracellular pH. To test the potential role of intracellular pH change associated with chloride loss in promoting hemolysis, intracellular pH was altered by: (a) a direct addition of fixed acid or base to sucrose solution; (b) the removal of dissolved CO(2) from sucrose solution; and (c) the addition of cells to isotonic NaHCO(3) solution in the absence of sucrose. In all cases, only calf and not cow cells underwent hemolysis. Moreover, 4-acetamido-4’-isothiocyano-2,2’-stilbene disulfonic acid, a potent anion transport inhibitor, completely protected calf cells from hemolysis and caused a nearly total inhibition of both chloride loss and intracellular alkalinization. Furthermore, the hemolytic process is closely related to the integrity of a membrane protein, the band 3 protein, which can be cleaved to varying degrees by the combined treatment of pronase and lipase. Hemolysis is progressively inhibited as the band 3 protein undergoes proteolysis, until a total inhibition of hemolysis takes place when almost all of the band 3 protein is digested into smaller protein components with a mol wt of 65,000 and 35,000 daltons. These results suggest that the intracellular alkalinization process leading to a structural instability of the membrane band 3 protein is responsible for this calf cell hemolysis.  相似文献   
57.
The loss of facilitated glucose transport of red cells occurring in the newborn pig was monitored in 11 density-separated cells from birth to a 4 wk of age. At birth there was a threefold increase in glucose permeability from the lightest cells to the most dense, suggesting that cells having progressively less glucose permeability are released into the circulation as gestation proceeds. Because of extraordinary stimulation of erythropoietic activity, the uppermost top fraction constituting 2-3 percent of the total cells is composed purely of reticulocytes in the growing animal. The glucose permeability of these reticulocytes which at birth has a slow but significant rate of 3.7 μmol/ml cell x min at 25 degrees C is rapidly decreased within 3-4 days to the level of reticulocytes produced in the adult in response to phenylhydrazine assault. Moreover, reticulocytes themselves discard their membrane permeability to glucose in the course of maturation to red cells. Thus, even though reticulocytes at birth are permeable to glucose, they will become red cells practically impervious to glucose within a few days. These findings suggest that the transition from a glucose- permeable fetal state to a glucose-impermeable postnatal state is brought about by two mechanisms: (a) dilution of fetal cells by glucose-impervious cells produced coincidentally with or shortly after birth; and (b) elimination of fetal cells, which have a shorter half-life, from the circulation.  相似文献   
58.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   
59.
Restriction endonuclease analysis was used to examine variation in DNA of 22 wild isolates of Spodoptera frugiperda nuclear polyhedrosis virus (SfNPV). Eleven of the 15 isolated from Louisiana were distinguishable based on restriction fragment profiles from the enzymes BamHI, HindIII, and EcoRI. There was significant genetic variation in SfNPV isolates within single agricultural fields. Nucleotide sequence divergence values, based on restriction fragment profiles, indicated that genetic variation among isolates foreign to Louisiana (Ohio, Ecuador, Mexico, Georgia, Colombia, and Venezuela) was greater than that among the Louisiana isolates. However, certain foreign isolates were similar to or identical with Louisiana isolates. Genetic variation of the viral DNA was not influenced by the insect's host plan species.  相似文献   
60.
A 5,500-base-pair BglII-EcoRI fragment proximal to the hsd genes of Escherichia coli K-12 has been cloned in the plasmid vector pUC9. The resultant hybrid plasmid was shown to complement the mcrB mutation of E. coli K802. The presence of the hybrid plasmid in strain K802 caused an 18.3-fold drop in transformation efficiency with AluI-methylated pACYC184 relative to unmethylated pACYC184. These results indicate that the cloned DNA is involved in the McrB system restriction of 5-methylcytosine DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号