首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31353篇
  免费   4018篇
  国内免费   30篇
  35401篇
  2016年   289篇
  2015年   383篇
  2014年   478篇
  2013年   755篇
  2012年   766篇
  2011年   803篇
  2010年   551篇
  2009年   461篇
  2008年   699篇
  2007年   731篇
  2006年   712篇
  2005年   708篇
  2004年   705篇
  2003年   722篇
  2002年   725篇
  2001年   1940篇
  2000年   1902篇
  1999年   1502篇
  1998年   508篇
  1997年   504篇
  1996年   520篇
  1995年   457篇
  1994年   447篇
  1993年   449篇
  1992年   1110篇
  1991年   1124篇
  1990年   1111篇
  1989年   1064篇
  1988年   994篇
  1987年   950篇
  1986年   805篇
  1985年   777篇
  1984年   624篇
  1983年   541篇
  1982年   393篇
  1981年   369篇
  1980年   350篇
  1979年   592篇
  1978年   469篇
  1977年   432篇
  1976年   353篇
  1975年   469篇
  1974年   484篇
  1973年   432篇
  1972年   420篇
  1971年   322篇
  1970年   272篇
  1969年   253篇
  1968年   237篇
  1967年   223篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
The Na+,K+-ATPase belongs to the P-ATPase family, whose characteristic property is the formation of a phosphorylated intermediate. The enzyme is also a defined target for cardiotonic steroids which inhibit its functional activity and initiate intracellular signaling. Here we describe the 4.6 ? resolution crystal structure of the pig kidney Na+,K+-ATPase in its phosphorylated form stabilized by high affinity binding of the cardiotonic steroid ouabain. The steroid binds to a site formed at transmembrane segments αM1-αM6, plugging the ion pathway from the extracellular side. This structure differs from the previously reported low affinity complex with potassium. Most importantly, the A domain has rotated in response to phosphorylation and αM1-2 move towards the ouabain molecule, providing for high affinity interactions and closing the ion pathway from the extracellular side. The observed re-arrangements of the Na+,K+-ATPase stabilized by cardiotonic steroids may affect protein-protein interactions within the intracellular signal transduction networks.  相似文献   
994.
Plants growing on metalliferous soils from abandoned mines are unique because of their ability to cope with high metal levels in soil. In this study, we characterized plants and soils from an abandoned Pb-Zn mine in the Basque Country (northern Spain). Soil in this area proved to be deficient in major macronutrients and to contain toxic levels of Cd, Pb, and Zn. Spontaneously growing native plants (belonging to 31 species, 28 genera, and 15 families) were botanically identified. Plant shoots and rhizosphere soil were sampled at several sites in the mine, and analyzed for Pb, Zn and Cd concentration. Zinc showed the highest concentrations in shoots, followed by Pb and Cd. Highest Zn concentrations in shoots were found in the Zn-Cd hyperaccumulator Thlaspi caerulescens (mean = 18,254 mg Zn kg(-1) DW). Different metal tolerance and accumulation patterns were observed among the studied plant species, thus offering a wide germplasm assortment for the suitable selection of phytoremediation technologies. This study highlights the importance of preserving metalliferous environments as they shelter a unique and highly valuable metallicolous biodiversity.  相似文献   
995.
996.
A I Lamond  B Sproat  U Ryder  J Hamm 《Cell》1989,58(2):383-390
We have used oligonucleotides made of 2'-OMe RNA to analyze the role of separate domains of U2 snRNA in the splicing process. We show that antisense 2'-OMe RNA oligonucleotides bind efficiently and specifically to U2 snRNP and demonstrate that masking of two separate regions of U2 snRNA can inhibit splicing by affecting different steps in the spliceosome assembly pathway. Masking the 5' terminus of U2 snRNA does not prevent U2 snRNP binding to pre-mRNA but blocks subsequent assembly of a functional spliceosome. By contrast, masking of U2 sequences complementary to the pre-mRNA branch site completely inhibits binding of pre-mRNA. Hybrid formation at the branch site complementary region also triggers a specific change which affects the 5' terminus of U2 snRNA.  相似文献   
997.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   
998.
Koegl M  Hoppe T  Schlenker S  Ulrich HD  Mayer TU  Jentsch S 《Cell》1999,96(5):635-644
Proteins modified by multiubiquitin chains are the preferred substrates of the proteasome. Ubiquitination involves a ubiquitin-activating enzyme, E1, a ubiquitin-conjugating enzyme, E2, and often a substrate-specific ubiquitin-protein ligase, E3. Here we show that efficient multiubiquitination needed for proteasomal targeting of a model substrate requires an additional conjugation factor, named E4. This protein, previously known as UFD2 in yeast, binds to the ubiquitin moieties of preformed conjugates and catalyzes ubiquitin chain assembly in conjunction with E1, E2, and E3. Intriguingly, E4 defines a novel protein family that includes two human members and the regulatory protein NOSA from Dictyostelium required for fruiting body development. In yeast, E4 activity is linked to cell survival under stress conditions, indicating that eukaryotes utilize E4-dependent proteolysis pathways for multiple cellular functions.  相似文献   
999.
We investigated whether endogenously or exogenously produced nitric oxide (NO) can inhibit cellular glutathione reductase (GR) via the formation of S-nitrosothiols to decrease cellular glutathione (GSH) and increase oxidative stress in RAW 264.7 cells. The specificity of this inhibition was demonstrated by addition of a NO-synthase inhibitor, and met- or oxyhemoglobin. Using isolated GR we found that only certain NO donors inhibit this enzyme via S-nitrosothiol. Furthermore, we found that cellular GSH decrease is paralleled by an increase of superoxide anion production. Our results show that the GR enzyme is a potential target of S-nitrosothiols to decrease cellular GSH levels and to induce oxidative stress in macrophages.  相似文献   
1000.
We cloned and expressed a full-length cDNA encoding a phospholipase D of type alpha (PLDalpha) from cabbage. Analysis of the cDNA predicted an 812-amino-acid protein of 92.0 kDa. The deduced amino acid sequence of cabbage PLD has 83% and 80% identity with Arabidopsis PLDalpha and castor bean PLD, respectively. Expression of this cDNA clone in E. coli shows a functional PLD activity similar to that of the natural PLD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号