首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   27篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   14篇
  2014年   12篇
  2013年   27篇
  2012年   20篇
  2011年   30篇
  2010年   18篇
  2009年   16篇
  2008年   12篇
  2007年   17篇
  2006年   21篇
  2005年   18篇
  2004年   15篇
  2003年   17篇
  2002年   21篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   5篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
排序方式: 共有418条查询结果,搜索用时 31 毫秒
101.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   
102.
103.
Many eubacteria are resistant to the toxic oxidizing agent potassium tellurite, and tellurite resistance involves diverse biochemical mechanisms. Expression of the iscS gene from Geobacillus stearothermophilus V, which is naturally resistant to tellurite, confers tellurite resistance in Escherichia coli K-12, which is naturally sensitive to tellurite. The G. stearothermophilus iscS gene encodes a cysteine desulfurase. A site-directed mutation in iscS that prevents binding of its pyridoxal phosphate cofactor abolishes both enzyme activity and its ability to confer tellurite resistance in E. coli. Expression of the G. stearothermophilus iscS gene confers tellurite resistance in tellurite-hypersensitive E. coli iscS and sodA sodB mutants (deficient in superoxide dismutase) and complements the auxotrophic requirement of an E. coli iscS mutant for thiamine but not for nicotinic acid. These and other results support the hypothesis that the reduction of tellurite generates superoxide anions and that the primary targets of superoxide damage in E. coli are enzymes with iron-sulfur clusters.  相似文献   
104.
The restriction fragments polymorphisms of the mitochondrial DNA and the PCR fragment that comprised the internal transcribes spacers and the 5.8S rRNA gene, together with the electrophoretic karyotypes of 40 strains from the 10 species of the genus Zygosaccharomyces, including the new species Z. lentus were examined. The RFLP's of the ITS-5.8S region showed a specific restriction pattern for each species, including the new species Z. lentus. The only exception were the species Z. cidri and Z. fermentati that produced identical restriction profiles. The electrophoretic chromosome patterns confirmed the differences between the species of this genus, including the phylogenetic closest species Z. cidri and Z. fermentati. They present few chromosomes ranging from 3 bands (4 or 5 chromosomes) for Z. florentinus to 7 bands (8 to 10 chromosomes) for Z. cidri and Z. fermentati. The strain level resolution power of RFLP's of mtDNA of this genus enabled the characterisation of strains from the same species, even where they are isolated from the same substrate. However, in the cases of Z. bailii and Z. lentus, electrophoretic karyotyping there was considerable variation.  相似文献   
105.
Incubation of the diterpene 2beta-hydroxy-ent-13-epi-manoyl oxide with Gibberella fujikuroi afforded in good yield 2beta,6beta-dihydroxy-ent-13-epi-manoyl oxide, 2beta,12beta-dihydroxy-ent-13-epi-manoyl oxide and 2beta,20-dihydroxy-ent-13-epi-manoyl oxide, confirming that although ent-13-epi-manoyl oxide is a final metabolite of a biosynthetic branch in this fungus, more polar derivatives of this compound can be transformed by this micro-organism.  相似文献   
106.
107.
Gamma carbonic anhydrases in plant mitochondria   总被引:2,自引:0,他引:2  
Three genes from Arabidopsis thaliana with high sequence similarity to gamma carbonic anhydrase (γCA), a Zn containing enzyme from Methanosarcina thermophila(CAM), were identified and characterized. Evolutionary and structural analyses predict that these genes code for active forms of γCA. Phylogenetic analyses reveal that these Arabidopsis gene products cluster together with CAM and related sequences from α and γ proteobacteria, organisms proposed as the mitochondrial endosymbiont ancestor. Indeed, in vitro and in vivo experiments indicate that these gene products are transported into the mitochondria as occurs with several mitochondrial protein genes transferred, during evolution, from the endosymbiotic bacteria to the host genome. Moreover, putative CAM orthologous genes are detected in other plants and green algae and were predicted to be imported to mitochondria. Structural modeling and sequence analysis performed in more than a hundred homologous sequences show a high conservation of functionally important active site residues. Thus, the three histidine residues involved in Zn coordination (His 81, 117 and 122), Arg 59, Asp 61, Gin 75, and Asp 76 of CAM are conserved and properly arranged in the active site cavity of the models. Two other functionally important residues (Glu 62 and Glu 84 of CAM) are lacking, but alternative amino acids that might serve to their roles are postulated. Accordingly, we propose that photosynthetic eukaryotic organisms (green algae and plants) contain γCAs and that these enzymes codified by nuclear genes are imported into mitochondria to accomplish their biological function.  相似文献   
108.
The metabolism of 25-hydroxyvitamin D(3) was studied with a crude mitochondrial cytochrome P450 extract from pig kidney and with recombinant human CYP27A1 (mitochondrial vitamin D(3) 25-hydroxylase) and porcine CYP2D25 (microsomal vitamin D(3) 25-hydroxylase). The kidney mitochondrial cytochrome P450 catalyzed the formation of 1alpha,25-dihydroxyvitamin D(3), 24,25-dihydroxyvitamin D(3) and 25,27-dihydroxyvitamin D(3). An additional metabolite that was separated from the other hydroxylated products on HPLC was also formed. The formation of this 25-hydroxyvitamin D(3) metabolite was dependent on NADPH and the mitochondrial electron transferring protein components. A monoclonal antibody directed against purified pig liver CYP27A1 immunoprecipitated the 1alpha- and 27-hydroxylase activities towards 25-hydroxyvitamin D(3) as well as the formation of the unknown metabolite. These results together with substrate inhibition experiments indicate that CYP27A1 is responsible for the formation of the unknown 25-hydroxyvitamin D(3) metabolite in kidney. Recombinant human CYP27A1 was found to convert 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), 25,27-dihydroxyvitamin D(3) and a major metabolite with the same retention time on HPLC as that formed by kidney mitochondrial cytochrome P450. Gas chromatography-mass spectrometry (GC-MS) analysis of the unknown enzymatic product revealed it to be a triol different from other known hydroxylated 25-hydroxyvitamin D(3) metabolites such as 1alpha,25-, 23,25-, 24,25-, 25,26- or 25,27-dihydroxyvitamin D(3). The product had the mass spectrometic properties expected for 4beta,25-dihydroxyvitamin D(3). Recombinant porcine CYP2D25 converted 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3) and 25,26-dihydroxyvitamin D(3). It can be concluded that both CYP27A1 and CYP2D25 are able to carry out multiple hydroxylations of 25-hydroxyvitamin D(3).  相似文献   
109.
110.
Determination of the nucleotide sequence of a 4.5-kb chromosomal DNA fragment of Bacillus stearothermophilus LV revealed two open reading frames (ORFs) of 121 and 727 amino acids (aa) that exhibit a high degree of similarity with the cadC and cadA cadmium resistance genes of a number of microorganisms. Transfer and expression of the B. stearothermophilus LV cadA or cadC/cadA genes in E. coli caused increased cadmium chloride susceptibility in the bacterial host. Transfer of cadC alone did not result in any detectable phenotypic change in E. coli. Received: 26 November 2001 / Accepted: 21 December 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号