首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   9篇
  58篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1986年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
31.
Cellular movements are produced by forces. Typically, cytoskeletal proteins such as microtubules and actin filaments generate forces via polymerization or in conjunction with molecular motors. However, the fertilization of a Limulus polyphemus egg involves a third type of actin-based cellular engine--a biological spring. During the acrosome reaction, a 60-microm long coiled and twisted bundle of actin filaments straightens and extends from a sperm cell, penetrating the vitelline layer surrounding the egg. A subtle overtwist of 0.2 degrees /subunit underlies the mechanochemical basis for the extension of this actin spring. Upon calcium activation, this conformational strain energy is converted to mechanical work, generating the force required to extend the bundle through the vitelline layer. In this article, we stall the extension of the acrosome bundle in agarose gels of different concentrations. From the stall forces, we estimate a maximum force of 2 nN and a puncturing pressure of 1.6 MPa. We show the maximum force of extension is three times larger than the force required to puncture the vitelline layer. Thus, the elastic strain energy stored in the acrosome bundle is more than sufficient to power the acrosome reaction through the egg envelope.  相似文献   
32.
33.
Rapid alterations in protein expression are commonly regulated by adjusting translation. In addition to cap-dependent translation, which is e.g. induced by pro-proliferative signaling via the mammalian target of rapamycin (mTOR)-kinase, alternative modes of translation, such as internal ribosome entry site (IRES)-dependent translation, are often enhanced under stress conditions, even if cap-dependent translation is attenuated. Common stress stimuli comprise nutrient deprivation, hypoxia, but also inflammatory signals supplied by infiltrating immune cells. Yet, the impact of inflammatory microenvironments on translation in tumor cells still remains largely elusive. In the present study, we aimed at identifying translationally deregulated targets in tumor cells under inflammatory conditions. Using polysome profiling and microarray analysis, we identified cyp24a1 (1,25-dihydroxyvitamin D3 24-hydroxylase) to be translationally upregulated in breast tumor cells co-cultured with conditioned medium of activated monocyte-derived macrophages (CM). Using bicistronic reporter assays, we identified and validated an IRES within the 5′ untranslated region (5′UTR) of cyp24a1, which enhances translation of cyp24a1 upon CM treatment. Furthermore, IRES-dependent translation of cyp24a1 by CM was sensitive to phosphatidyl-inositol-3-kinase (PI3K) inhibition, while constitutive activation of Akt sufficed to induce its IRES activity. Our data provide evidence that cyp24a1 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment. Considering the negative feedback impact of cyp24a1 on the vitamin D responses, the identification of a novel, translational mechanism of cyp24a1 regulation might open new possibilities to overcome the current limitations of vitamin D as tumor therapeutic option.  相似文献   
34.
We established previously that alpha-synuclein displayed a protective anti-apoptotic phenotype in neurons, mainly by down-regulating p53-dependent caspase-3 activation (Alves da Costa, C., Ancolio, K., and Checler, F. (2000) J. Biol. Chem. 275, 24065-24069; Alves da Costa, C., Paitel, E., Vincent, B., and Checler, F. (2002) J. Biol. Chem. 277, 50980-50984). This function was abolished by Parkinson disease-linked pathogenic mutations and by the dopaminergic toxin, 6-hydroxydopamine (6OH-DOPA) (Alves da Costa, C., Paitel, E., Vincent, B., and Checler, F. (2002) J. Biol. Chem. 277, 50980-50984). However, the mechanisms by which 6OH-DOPA interfered with alpha-synuclein function remained unclear. Here we showed that 6OH-DOPA prevents alpha-synuclein-mediated anti-apoptotic function by altering its degradation. Thus, 6OH-DOPA treatment of TSM1 neurons and SH-SY5Y neuroblastoma cells enhances endogenous alpha-synuclein-like immunoreactivity and inhibits the catabolism of endogenous and recombinant alpha-synucleins by purified 20 S proteasome. Furthermore, we demonstrated that 6OH-DOPA directly inhibits endogenous proteasomal activity in TSM1 and SH-SY5Y cells and also blocks purified proteasome activity in vitro. This inhibitory effect can be prevented by the anti-oxidant phenyl-N-butylnitrone. We also established that 6OH-DOPA triggers the aggregation of recombinant alpha-synuclein in vitro. Therefore, we conclude that 6OH-DOPA abolishes alpha-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation, thereby increasing its intracellular concentration and potential propensity to aggregation, the latter phenomenon being directly exacerbated by 6OH-DOPA itself. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), another toxin inducer of Parkinson disease-like pathology, does not affect alpha-synuclein protective function and fails to trigger aggregation of recombinant alpha-synuclein. Furthermore, MPP(+) does not alter cellular proteasomal activity, and only high concentrations of the toxin affect purified 20 S proteasome by a mechanism that remains insensitive to phenyl-N-butylnitrone. The drastically distinct effects of 6OH-DOPA and MPP(+) on alpha-synuclein function are discussed with respect to Parkinson disease pathology and animal models mimicking this pathology.  相似文献   
35.
OBJECTIVE: To demonstrate CD36 expression with quantum dots (QDs) 525 and/or 605 on human monocytic U937 cells and atherosclerotic tissue sections by means of flow cytometry (FCM) and/or confocal laser scanning microscopy (CLSM). STUDY DESIGN: U937 cells and tissue sections were analyzed by means of FCM and/or CLSM. FCM was performed, using different ultraviolet (UV) and visible (488/532 nm) excitation modes. In the visible mode, fluorescence intensities of QDs, phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were compared. Three-dimensional (3-D) sequences of images were obtained by spectral analysis in a CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, providing factor curves and images. Factor images are the result of the FAMIS image processing method, which differentiates emission spectra from 3D sequences of images. In CLSM analysis, preparations are screened in a UV excitation mode to optimize the possibilities of QDs and have the benefit of 4',6-diamino-2-phenylindole or Hoechst 33342 counterstaining of nuclei. RESULTS: FCM and CLSM revealed CD36 expression by means of QDs 525 and/or 605. Fluorescence intensity of PE and of FITC was higher than that of QDs 525 and of 605. As factor curves and images show the red emission of QDs 605 only, subsequent reliable identification and localization of CD36 was obtained. CONCLUSION: QDs 525 and 605 are useful to analyze antigenic expression. Following FCM, which is well adapted to detect fluorescence emission of QDs in the UV or visible excitation mode, CLSM and subsequent spectral analysis assess more specific characterization of QD fluorescent emissions.  相似文献   
36.
Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   
37.
38.

Background  

The mechanism of action of levonorgestrel (LNG) as emergency contraception (EC) remains a subject of debate and its effect on sperm function has been only partially explained. The aim of this study was to assess whether LNG at a similar dose to those found in serum following oral intake for EC could affect spermatozoa when exposed to human fallopian tubes in vitro.  相似文献   
39.
Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson''s disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death.  相似文献   
40.
OBJECTIVE: To localize magnetic resonance imaging (MRI) contrast agents injected intravenously into mouse livers. STUDY DESIGN: Parallel studies were performed on fluorescent europium and nonfluorescent, paramagnetic gadolinium and on a product combining nanoparticles of Fe and Texas Red to obtain combined information on the distribution of these molecules inside the liver. The distribution of different superparamagnetic iron oxides was also studied because the size of these new compounds is not always convenientfor microcirculation studies. RESULTS: Europium and Texas Red can be detected by confocal microscopy. Europium, iron and gadolinium can be detected by secondary ion mass spectrometry (SIMS) microscopy. Studies confirmed the complementarity of both microscopies. They also confirmed the possibility of using europium as a model of gadolinium to analyze thefate of MRI contrast agents. CONCLUSION: The methodology can be used on mice injected intravenously and analyzed by confocal and SIMS microscopy to localize MRI contrast agents inside cellular and tissue specimens of mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号