首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1844篇
  免费   171篇
  2023年   12篇
  2022年   41篇
  2021年   58篇
  2020年   44篇
  2019年   51篇
  2018年   57篇
  2017年   55篇
  2016年   80篇
  2015年   123篇
  2014年   106篇
  2013年   116篇
  2012年   184篇
  2011年   155篇
  2010年   86篇
  2009年   74篇
  2008年   108篇
  2007年   110篇
  2006年   96篇
  2005年   66篇
  2004年   52篇
  2003年   55篇
  2002年   52篇
  2001年   14篇
  2000年   10篇
  1999年   16篇
  1998年   11篇
  1997年   7篇
  1995年   8篇
  1994年   7篇
  1992年   9篇
  1991年   5篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   9篇
  1986年   8篇
  1985年   4篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   8篇
  1977年   4篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1971年   6篇
  1970年   6篇
  1969年   5篇
  1967年   6篇
  1966年   3篇
排序方式: 共有2015条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations.  相似文献   
75.
76.
Many of the challenges facing knowledge synthesis from life cycle assessment (LCA) studies stem from the inability of study authors and readers to formally agree on the structure and content of the product system models used to perform LCA computations. This article presents a framework for formally disclosing the foreground of an LCA study in a way that permits the computations to be inspected, verified, and reproduced by a reader, provided that the reader has access to the same life cycle inventory and impact characterization resources as the author. The framework can also be used to partition a study into public and private portions, allowing both portions to be critically reviewed but omitting the private information from the disclosure. A disclosure is made up of six components, including three lists of entities in the model and three sparse matrices describing their interconnections. The entity lists make reference to previously‐published resources, including background inventory databases and characterized elementary flows, and the disclosure framework requires both author and reader to agree on the meaning of each of these references. The framework contributes to ongoing efforts within and beyond industrial ecology to improve the reproducibility and verifiability of scholarly works, and if implemented, plots a course toward distributed, platform‐independent computation and validation of LCA results.  相似文献   
77.
There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting.  相似文献   
78.
79.
Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号