首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   145篇
  2022年   12篇
  2021年   26篇
  2018年   30篇
  2017年   18篇
  2016年   41篇
  2015年   65篇
  2014年   62篇
  2013年   72篇
  2012年   106篇
  2011年   92篇
  2010年   59篇
  2009年   34篇
  2008年   64篇
  2007年   56篇
  2006年   52篇
  2005年   43篇
  2004年   53篇
  2003年   49篇
  2002年   52篇
  2001年   48篇
  2000年   49篇
  1999年   44篇
  1998年   18篇
  1997年   10篇
  1996年   13篇
  1995年   17篇
  1993年   11篇
  1992年   29篇
  1991年   23篇
  1990年   27篇
  1989年   27篇
  1988年   25篇
  1987年   21篇
  1986年   24篇
  1985年   19篇
  1984年   14篇
  1983年   19篇
  1982年   11篇
  1981年   13篇
  1979年   19篇
  1978年   14篇
  1977年   12篇
  1976年   22篇
  1975年   17篇
  1974年   22篇
  1973年   18篇
  1972年   13篇
  1971年   12篇
  1970年   13篇
  1967年   10篇
排序方式: 共有1704条查询结果,搜索用时 15 毫秒
91.
92.
Based on chromosomal mapping data, we recently revealed an unexpected linkage of troponin genes in the human genome: the six genes encoding striated muscle troponin I and troponin T isoforms are located at three chromosomal sites, each of which carries a troponin I-troponin T gene pair. Here we have investigated the organization of these genes at the DNA level in isolated P1 and PAC genomic clones and demonstrate close physical linkage in two cases through the isolation of individual clones containing a complete troponin I-troponin T gene pair. As an initial step toward fully characterizing this pattern of linkage, we have determined the organization and complete sequence of the locus encoding cardiac troponin I and slow skeletal troponin T and thereby also provide the first determination of the structure and sequence of a slow skeletal troponin T gene. Our data show that the genes are organized head to tail and are separated by only 2.6 kb of intervening sequence. In contrast to other troponin genes, and despite their close proximity, the cardiac troponin I and slow skeletal troponin T genes show independent tissue-specific expression. Such close physical linkage has implications for the evolution of the troponin gene families, for their regulation, and for the analysis of mutations implicated in cardiomyopathy.  相似文献   
93.
Technicians recorded body condition score (BCS) and several parameters related to estrus and/or metritis for 1694 first insemination cows on 23 farms. Additional variables for modeling the adjusted odds ratios (OR) for pregnancy were data on disease prior to or within 21 days of AI and test day milk yields. Significant predictors for pregnancy were farm, year and season, BCS, uterine tone, contaminated insemination gun after AI, fat-protein corrected kilograms milk (FPCM), days in milk (DIM), and diseases. Vaginal mucus, ease of cervical passage, and lameness were not significant predictors for pregnancy. Pregnancy risk at AI increased with increasing DIM, reaching a near optimum after 82 days. Lack of uterine tone was associated with a lowered pregnancy risk (OR = 0.69) as was contaminated insemination gun (OR = 0.67), first-parity lactation, FPCM >33 kg (OR = 0.71), BCS 2.5 at AI (OR = 0.65), clinical mastitis (OR = 0.53), cystic ovarian disease (OR = 0.53), and metritis (OR = 0.74). It was concluded that data on BCS and uterine findings, as collected by AI technicians, are significant predictors of AI outcome. Dairy producers and veterinarians should jointly examine the potential costs and value of such AI technician-based data to improve herd fertility.  相似文献   
94.
Various genes related to early events in human gustation have recently been discovered, yet a thorough understanding of taste transduction is hampered by gaps in our knowledge of the signaling chain. As a first step toward gaining additional insight, the expression specificity of genes in human taste tissue needs to be determined. To this end, a fungiform papillae cDNA library has been generated and analyzed. For validation of the library, taste-related gene probes were used to detect known molecules. Subsequently, DNA sequence analysis was performed to identify further candidates. Of 987 clones sequenced, clustering results in 288 contigs. Comparison of these contigs with genomic databases reveals that 207 contigs (71.9%) match known genes, 16 (5.6%) match hypothetical genes, eight (2.8%) match repetitive sequences and 57 (19.8%) have no or low similarity to annotated genes. The results indicate that despite a high level of redundancy, this human fungiform cDNA library contains specific taste markers and is valuable for investigation of both known and novel taste-related genes.  相似文献   
95.
Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-alpha; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor.  相似文献   
96.
97.
Peptide nucleic acid (PNA) is a DNA analog with broad biotechnical applications, and possibly also treatment applications. Its suggested uses include that of a specific anchor sequence for biologically active peptides to plasmids in a sequence-specific manner. Such complexes, referred to as Bioplex, have already been used to enhance non-viral gene transfer in vitro. To investigate how hybridization of PNAs to supercoiled plasmids would be affected by the binding of multiple PNA-peptides to the same strand of DNA, we have developed a method of quantifying the specific binding of PNA using a PNA labeled with a derivative of the fluorophore thiazole orange (TO). Cooperative effects were found at a distance of up to three bases. With a peptide present at the end of one of the PNAs, steric hindrance occurred, reducing the increase in binding rate when the distance between the two sites was less than two bases. In addition, we found increased binding kinetics when two PNAs binding to overlapping sites on opposite DNA strands were used, without the use of chemically modified bases in the PNAs.  相似文献   
98.
By data mining in the sequence of the Corynebacterium glutamicum ATCC 13032 genome, six putative mycolyltransferase genes were identified that code for proteins with similarity to the N-terminal domain of the mycolic acid transferase PS1 of the related C. glutamicum strain ATCC 17965. The genes identified were designated cop1, cmt1, cmt2, cmt3, cmt4, and cmt5 ( cmt from corynebacterium mycolyl transferases). cop1 encodes a protein of 657 amino acids, which is larger than the proteins encoded by the cmt genes with 365, 341, 483, 483, and 411 amino acids. Using bioinformatics tools, it was shown that all six gene products are equipped with signal peptides and esterase domains. Proteome analyses of the cell envelope of C. glutamicum ATCC 13032 resulted in identification of the proteins Cop1, Cmt1, Cmt2, and Cmt4. All six mycolyltransferase genes were used for mutational analysis. cmt4 could not be mutated and is considered to be essential. cop1 was found to play an additional role in cell shape formation. A triple mutant carrying mutations in cop1, cmt1, and cmt2 aggregated when cultivated in MM1 liquid medium. This mutant was also no longer able to synthesize trehalose di coryno mycolate (TDCM). Since single and double mutants of the genes cop1, cmt1, and cmt2 could form TDCM, it is concluded that the three genes, cop1, cmt1, and cmt2, are involved in TDCM biosynthesis. The presence of the putative esterase domain makes it highly possible that cop1, cmt1, and cmt2 encode enzymes synthesizing TDCM from trehalose monocorynomycolate.  相似文献   
99.
Although the physiological role of uncoupling proteins (UCPs) 2 and 3 is uncertain, their activation by superoxide and by lipid peroxidation products suggest that UCPs are central to the mitochondrial response to reactive oxygen species. We examined whether superoxide and lipid peroxidation products such as 4-hydroxy-2-trans-nonenal act independently to activate UCPs, or if they share a common pathway, perhaps by superoxide exposure leading to the formation of lipid peroxidation products. This possibility can be tested by blocking the putative reactive oxygen species cascade with selective antioxidants and then reactivating UCPs with distal cascade components. We synthesized a mitochondria-targeted derivative of the spin trap alpha-phenyl-N-tert-butylnitrone, which reacts rapidly with carbon-centered radicals but is unreactive with superoxide and lipid peroxidation products. [4-[4-[[(1,1-Dimethylethyl)-oxidoimino]methyl]phenoxy]butyl]triphenylphosphonium bromide (MitoPBN) prevented the activation of UCPs by superoxide but did not block activation by hydroxynonenal. This was not due to MitoPBN reacting with superoxide or the hydroxyl radical or by acting as a chain-breaking antioxidant. MitoPBN did react with carbon-centered radicals and also prevented lipid peroxidation by the carbon-centered radical generator 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AAPH). Furthermore, AAPH activated UCPs, and this was blocked by MitoPBN. These data suggest that superoxide and lipid peroxidation products share a common pathway for the activation of UCPs. Superoxide releases iron from iron-sulfur center proteins, which then generates carbon-centered radicals that initiate lipid peroxidation, yielding breakdown products that activate UCPs.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号