首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   40篇
  321篇
  2022年   4篇
  2021年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   11篇
  2011年   13篇
  2010年   12篇
  2009年   12篇
  2008年   6篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   10篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1993年   9篇
  1992年   4篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1973年   7篇
  1972年   6篇
  1971年   6篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1962年   4篇
  1960年   2篇
  1955年   3篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
231.
Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen–deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain–mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.  相似文献   
232.
A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful.  相似文献   
233.
Previous in vitro experiments with Desulfovibrio vulgaris strain Hildenborough demonstrated that extracts containing hydrogenase and cytochrome c3 could reduce uranium(VI) to uranium(IV) with hydrogen as the electron donor. To test the involvement of these proteins in vivo, a cytochrome c3 mutant of D. desulfuricans strain G20 was assayed and found to be able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. Cytochrome c3 appears to be a part of the in vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein.  相似文献   
234.
Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates.  相似文献   
235.
236.
Protein phosphatase 2A (PP2A) regulates a broad spectrum of cellular processes. This enzyme is a collection of varied heterotrimeric complexes, each composed of a catalytic (C) and regulatory (B) subunit bound together by a structural (A) subunit. To understand the cell cycle dynamics of this enzyme population, we carried out quantitative and qualitative analyses of the PP2A subunits of Saccharomyces cerevisiae. We found the following: the level of each subunit remained constant throughout the cell cycle; there is at least 10 times more of one of the regulatory subunits (Rts1p) than the other (Cdc55p); Tpd3p, the structural subunit, is limiting for both catalytic and regulatory subunit binding. Using green fluorescent protein-tagged forms of each subunit, we monitored the sites of significant accumulation of each protein throughout the cell cycle. The two regulatory subunits displayed distinctly different dynamic localization patterns that overlap with the A and C subunits at the bud tip, kinetochore, bud neck, and nucleus. Using strains null for single subunit genes, we confirmed the hypothesis that regulatory subunits determine sites of PP2A accumulation. Although Rts1p and Tpd3p required heterotrimer formation to achieve normal localization, Cdc55p achieved its normal localization in the absence of either an A or C subunit.  相似文献   
237.
238.
239.
R Bach  R Gentry  Y Nemerson 《Biochemistry》1986,25(14):4007-4020
The binding of factor VII and tissue factor produces a membrane-associated proteolytic complex which may be the primary biological initiator of coagulation. Homogeneous tissue factor, a glycoprotein purified from bovine brain, was reconstituted into phospholipid vesicles ranging from neutral (100% phosphatidylcholine) to highly charged (40% phosphatidylserine) with octyl glucoside. The vesicles were characterized with respect to size and tissue factor content and orientation. Employing data from protease digestion, we deduced that tissue factor is randomly oriented; thus, its effective concentration in these vesicles was half its total concentration. In all binding experiments, 1 mol of enzyme was bound per mole of available activator at saturation. This stoichiometry was not affected by the form of the enzyme employed or the phospholipid composition of the vesicles. With tissue factor incorporated into phosphatidylcholine vesicles, the Kd was 13.2 +/- 0.72 nM for factor VII and 4.54 +/- 1.37 nM for factor VIIa. Thus, the one-chain zymogen binds to the activator with only slightly less affinity than the more active two-chain enzyme. Active-site modification of factor VII and factor VIIa with diisopropyl fluorophosphate resulted in tighter binding of the derivatized molecules. Inclusion of phosphatidylserine in the vesicles altered the binding both quantitatively and qualitatively. With increasing acidic phospholipid, the concentration of enzyme required to occupy half the activator sites was decreased. In addition, positive cooperativity was observed, the degree of which depended on the vesicle charge and the form of the enzyme. An explicit two-site cooperative binding model is presented which fits these complex data. In this model, tissue factor is at least a dimer with two interacting enzyme binding sites.  相似文献   
240.
Pseudomonas culture longevity: control by phosphate   总被引:5,自引:0,他引:5  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号