首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   64篇
  2023年   11篇
  2022年   16篇
  2021年   20篇
  2020年   13篇
  2019年   10篇
  2018年   23篇
  2017年   20篇
  2016年   37篇
  2015年   45篇
  2014年   65篇
  2013年   64篇
  2012年   81篇
  2011年   72篇
  2010年   53篇
  2009年   38篇
  2008年   52篇
  2007年   47篇
  2006年   71篇
  2005年   50篇
  2004年   27篇
  2003年   38篇
  2002年   27篇
  2001年   23篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1993年   3篇
  1992年   11篇
  1991年   3篇
  1990年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   3篇
  1966年   4篇
  1965年   3篇
  1955年   2篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
101.
102.
Methanotrophs use methane (CH4) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH4 oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH4 oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH4-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH4-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH4 flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH4 emission.  相似文献   
103.
Whole extract of rhizomes of Podophyllum hexandrum has been reported earlier by our group to render whole-body radioprotection. High-altitude P. hexandrum (HAPH) was therefore fractionated using solvents of varying polarity (non-polar to polar) and the different fractions were designated as, n-hexane (HE), chloroform (CE), alcohol (AE), hydro-alcohol (HA) and water (WE). The total polyphenolic content (mg% of quercetin) was determined spectrophotometrically, while. The major constituents present in each fraction were identified and characterized using LC-APCI/MS/MS. In vitro screening of the individual fractions, rich in polyphenols and lignans, revealed several bioactivities of direct relevance to radioprotection e.g. metal-chelation activity, antioxidant activity, DNA protection, inhibition of radiation (250 Gy) and iron/ascorbate-induced lipid peroxidation (LPO). CE exhibited maximum protection to plasmid (pBR322) DNA in the plasmid relaxation assay (68.09% of SC form retention). It also showed maximal metal chelation activity (41.59%), evaluated using 2,2-bipyridyl assay, followed by AE (31.25%), which exhibited maximum antioxidant potential (lowest absorption unit value: 0.0389± 0.00717) in the reducing power assay. AE also maximally inhibited iron/ascorbate-induced and radiation-induced LPO (99.76 and 92.249%, respectively, at 2000 g/ml) in mouse liver homogenate. Under conditions of combined stress (radiation (250 Gy) + iron/ascorbate), at a concentration of 2000 g/ml, HA exhibited higher percentage of inhibition (93.05%) of LPO activity. HA was found to be effective in significantly (p < 0.05) lowering LPO activity over a wide range of concentrations as compared to AE. The present comparative study indicated that alcoholic (AE) and hydro-alcoholic (HA) fractions are the most promising fractions, which can effectively tackle radiation-induced oxidative stress.  相似文献   
104.
BACKGROUND AND AIMS: All plants synthesize pantothenate but its synthesis and regulation are not well understood. The aim of this work is to study the effect of exogenous supply of precursor compounds on pantothenate levels in leaves. METHODS: Precursor compounds were supplied in solution to excised leaves and the pantothenate content was measured using a microbial method. KEY RESULTS: Pantothenate levels in excised leaves of Limonium latifolium, tomato (Lycopersicon esculentum), bean (Phaseolus vulgaris) and grapefruit (Citrus x paradisi) were examined following an exogenous supply of the precursor compounds pantoyl lactone or beta-alanine. Significantly higher levels of extractable pantothenate were found when pantoyl lactone was supplied, but not when beta-alanine was supplied despite a measurable uptake of beta-alanine into the leaf. CONCLUSIONS: The results suggested that the pantoate supply may be rate-limiting or regulating pantothenate synthesis in leaves.  相似文献   
105.
Diabetes mellitus is a major risk factor for the development of vascular complications. We hypothesized that hyperglycemia decreases endothelial cell (EC) proliferation and survival via phosphatidylinositol 3-kinase (PI3k) and Akt signaling pathways. We cultured human umbilical vein ECs (HUVEC) in 5, 20, or 40 mM d-glucose. Cells grown in 5, 20, and 40 mM mannitol served as a control for osmotic effects. We measured EC proliferation for up to 15 days. We assessed apoptosis by annexin V and propidium iodide staining and flow cytometry, analyzed cell lysates obtained on culture day 8 for total and phosphorylated PI3k and Akt by Western blot analysis, and measured Akt kinase activity using a GSK fusion protein. HUVEC proliferation was also tested in the presence of pharmacological inhibitors of PI3k-Akt (wortmannin and LY294002) and after transfection with a constitutively active Akt mutant. ECs in media containing 5 mM d-glucose (control) exhibited log-phase growth on days 7-10. d-Glucose at 20 and 40 mM significantly decreased proliferation versus control (P < 0.05 for both), whereas mannitol did not impair EC proliferation. Apoptosis increased significantly in HUVEC exposed to 40 mM d-glucose. d-Glucose at 40 mM significantly decreased tyrosine-phosphorylated PI3k, threonine 308-phosphorylated-Akt, and Akt activity relative to control 5 mM d-glucose. Pharmacological inhibition of PI3k-Akt resulted in a dose-dependent decrease in EC proliferation. Transfection with a constitutively active Akt mutant protected ECs by enhancing proliferation when grown in 20 and 40 mM d-glucose. We conclude that d-glucose regulates Akt signaling through threonine phosphorylation of Akt and that hyperglycemia-impaired PI3k-Akt signaling may promote EC proliferative dysfunction in diabetes.  相似文献   
106.
The neuropeptide galanin suppresses seizure activity in the hippocampus by inhibiting glutamatergic neurotransmission. Galanin may also modulate limbic seizures through interaction with other neurotransmitters in neuronal populations that project to the hippocampus. We examined the role of galanin receptors types 1 and 2 in the dorsal raphe (DR) in the regulation of serotonergic transmission and limbic seizures. Infusion of a mixed agonist of galanin receptors types 1 and 2 [galanin (1-29)] into the DR augmented the severity of limbic seizures in both rats and wild-type mice and concurrently reduced serotonin concentration in the DR and hippocampus as measured by immunofluorescence or HPLC. In contrast, injection of the galanin receptor type 2 agonist galanin (2-11) mitigated the severity of seizures in both species and increased serotonin concentration in both areas. Injection of both galanin fragments into the DR of galanin receptor type 1 knockout mice exerted anticonvulsant effects. Both the proconvulsant activity of galanin (1-29) and seizure suppression by galanin (2-11) were abolished in serotonin-depleted animals. Our data indicate that, in the DR, galanin receptors types 1 and 2 modulate serotonergic transmission in a negative and a positive fashion, respectively, and that these effects translate into either facilitation or inhibition of limbic seizures.  相似文献   
107.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   
108.
Raman S  Brian DA 《Journal of virology》2005,79(19):12434-12446
The 210-nucleotide (nt) 5' untranslated region (UTR) in the positive-strand bovine coronavirus (BCoV) genome is predicted to contain four higher-order structures identified as stem-loops I to IV, which may function as cis-acting elements in genomic RNA replication. Here, we describe evidence that stem-loop IV, a bulged stem-loop mapping at nt 186 through 215, (i) is phylogenetically conserved among group 2 coronaviruses and may have a homolog in groups 1 and 3, (ii) exists as a higher-order structure on the basis of enzyme probing, (iii) is required as a higher-order element for replication of a BCoV defective interfering (DI) RNA in the positive but not the negative strand, and (iv) as a higher-order structure in wild-type (wt) and mutant molecules that replicate, specifically binds six cellular proteins in the molecular mass range of 25 to 58 kDa as determined by electrophoretic mobility shift and UV cross-linking assays; binding to viral proteins was not detected. Interestingly, the predicted stem-loop IV homolog in the severe acute respiratory syndrome (SARS) coronavirus appears to be group 1-like in that it is in part duplicated with a group 1-like conserved loop sequence and is not group 2-like, as would be expected by the SARS coronavirus group 2-like 3' UTR structure. These results together indicate that stem-loop IV in the BCoV 5' UTR is a cis-acting element for DI RNA replication and that it might function through interactions with cellular proteins. It is postulated that stem-loop IV functions similarly in the virus genome.  相似文献   
109.
110.
Grieco TM  Malhotra JD  Chen C  Isom LL  Raman IM 《Neuron》2005,45(2):233-244
Voltage-gated sodium channels with "resurgent" kinetics are specialized for high-frequency firing. The alpha subunits interact with a blocking protein that binds open channels upon depolarization and unbinds upon repolarization, producing resurgent sodium current. By limiting classical inactivation, the cycle of block and unblock shortens refractory periods. To characterize the blocker in Purkinje neurons, we briefly exposed inside-out patches to substrate-specific proteases. Trypsin and chymotrypsin each removed resurgent current, consistent with established roles for positively charged and hydrophobic/aromatic groups in blocking sodium channels. In Purkinje cells, the only known sodium channel-associated subunit that has a cytoplasmic sequence with several positive charges and clustered hydrophobic/aromatic residues is beta4 (KKLITFILKKTREK; beta4(154-167)). After enzymatic removal of block, beta4(154-167) fully reconstituted resurgent current, whereas scrambled or point-mutated peptides were ineffective. In CA3 pyramidal neurons, which lack beta4 and endogenous block, beta4(154-167) generated resurgent current. Thus, beta4 may be the endogenous open-channel blocker responsible for resurgent kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号