全文获取类型
收费全文 | 75篇 |
免费 | 11篇 |
专业分类
86篇 |
出版年
2018年 | 2篇 |
2017年 | 3篇 |
2015年 | 5篇 |
2013年 | 3篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 5篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 7篇 |
1996年 | 3篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1977年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有86条查询结果,搜索用时 15 毫秒
31.
JR Abney CD Meliza B Cutler M Kingma JE Lochner BA Scalettar 《Biophysical journal》1999,77(5):2887-2895
Secretory granules containing a hybrid protein consisting of the regulated secretory protein tissue plasminogen activator and an enhanced form of green fluorescent protein were tracked at high spatial resolution in growth cones of differentiated PC12 cells. Tracking shows that granules, unlike synaptic vesicles, generally are mobile in growth cones. Quantitative analysis of trajectories generated by granules revealed two dominant modes of motion: diffusive and directed. Diffusive motion was observed primarily in central and peripheral parts of growth cones, where most granules diffused two to four orders of magnitude more slowly than comparably sized spheres in dilute solution. Directed motion was observed primarily in proximal parts of growth cones, where a subset of granules underwent rapid, directed motion at average speeds comparable to those observed for granules in neurites. This high-resolution view of the dynamics of secretory granules in growth cones provides insight into granule organization and release at nerve terminals. In particular, the mobility of granules suggests that granules, unlike synaptic vesicles, are not tethered stably to cytoskeletal structures in nerve terminals. Moreover, the slow diffusive nature of this mobility suggests that secretory responses involving centrally distributed granules in growth cones will occur slowly, on a time scale of minutes or longer. 相似文献
32.
Multivesicular bodies (MVBs) are spherical endosomal organelles containing small vesicles formed by inward budding of the limiting membrane into the endosomal lumen. In mammalian red cells and cells of immune system, MVBs fuse with the plasma membrane in an exocytic manner, leading to release their contents including internal vesicles into the extracellular space. These released vesicles are termed exosomes. Transmission electron microscopy studies have shown that paramural vesicles situated between the plasma membrane and the cell wall occur in various cell wall-associated processes and are similar to exosomes both in location and in morphology. Our recent studies have revealed that MVBs and paramural vesicles proliferate when cell wall appositions are rapidly deposited beneath fungal penetration attempts or during plugging of plasmodesmata between hypersensitive cells and their intact neighboring cells. This indicates a potential secretion of exosome-like vesicles into the extracellular space by fusion of MVBs with the plasma membrane. This MVB-mediated secretion pathway was proposed on the basis of pioneer studies of MVBs and paramural vesicles in plants some forty years ago. Here, we recall the attention to the occurrence of MVB-mediated secretion of exosomes in plants.Key Words: cell wall, endocytosis, endosome, exocytosis, exosome, multivesicular body, paramural bodyMultivesicular bodies (MVBs) are spherical endosomal organelles containing a number of small vesicles formed by inward budding of the limiting membrane into the endosomal lumen.1 MVBs contain endocytosed cargoes and deliver them into lysosomal/vacuolar compartments for degradation. They also incorporate newly synthesized proteins destined for lysosomal/vacuolar compartments.2 In mammalian cells of hematopoietic origin, endosomal MVBs function in removal of endocytosed surface proteins in an exocytic manner. They are redirected to the plasma membrane, where they release their contents including internal vesicles into the extracellular space by membrane fusion. The released vesicles are termed exosomes.3 During reticulocyte maturation to erythrocyte, a group of surface proteins, such as the transferrin receptor, become obsolete and are discarded via MVB-mediated secretion.3 Time-course transmission electron microscopy (TEM) first revealed that colloidal gold-transferrin was internalized into MVBs via receptor-mediated endocytosis and then transferrin together with its receptor were delivered into the extracellular space via the fusion of MVBs with the plasma membrane of reticulocytes.4 Some other cell types of hematopoietic origin, such as activated platelets, cytotoxic T cells and antigen-presenting cells, also secrete exosomes. Exosomes thus may play a role in various physiological processes other than discarding obsolete proteins.3Our recent TEM studies provided ultrastructural evidence on the enhanced vesicle trafficking in barley leaf cells attacked by the biotrophic powdery mildew fungus. Multivesicular compartments including MVBs, intravacuolar MVBs, and paramural bodies turned out to proliferate in intact host cells during formation of cell wall appositions (papilla response), in the hypersensitive response, and during accommodation of haustoria.5,6 MVBs proliferated in the cytoplasm of haustorium-containing epidermal cells during compatible interactions and near sites of cell wall-associated oxidative microburst either during the papilla response or during the hypersensitive response. Because MVBs in plant cells have been demonstrated to be endosomal compartments,7–9 they may participate in internalization of nutrients from the apoplast of intact haustorium-containing epidermal cells and sequestration of damaged membranes and deleterious materials originating from the oxidative microburst.5,6 The presence of intravacuolar MVBs with double limiting membranes (Fig. 1A) indicates an engulfment of MVBs by the tonoplast and a vacuole-mediated autophagy of MVBs.5,6 MVBs, as prevacuolar compartments in plant cells,9 thus probably deliver their contents into the central vacuole via both the fusion with the tonoplast and the engulfment by the tonoplast (Fig. 2A and B). On the other hand, paramural bodies, in which small vesicles are situated between the cell wall and the plasma membrane, were associated with cell wall appositions deposited beneath fungal penetration attempts (Fig. 1B) or around hypersensitive cells including sites of plugged plasmodesmata (Fig. 1C and D).5,6 Because paramural vesicles are similar to exosomes both in location and in morphology, we speculated that MVBs fuse with the plasma membrane in an exocytic manner to form paramural bodies.5,6 Endocytosed cell surface materials in endosomal MVBs may be reused and delivered together with newly synthesized materials in Golgi apparatus-derived vesicles to cell wall appositions, which are deposited rapidly to prevent fungal penetration (Fig. 2A) or to contain hypersensitive cell death (Fig. 2B). MVBs thus may be driven along two distinct pathways to deliver their contents into either central vacuole or extracellular space.Open in a separate windowFigure 1Multivesicular compartments in intact cells in barley leaves attacked by the barley powdery mildew fungus. (A) An intravacuolar multivesicular body (MVB) with double limiting membranes in an intact epidermal cell (EC) adjacent to a hypersensitive epidermal cell (EC*). The arrows point to the outer limiting membrane, which is seemingly derived from the tonoplast. Note that neighboring intravacuolar vesicles (in between two arrowheads) may result from degradation of double limiting membranes of intravacuolar MVBs or may be delivered into the vacuole by MVB-fusion with the tonoplast. (B) Paramural vesicles (arrowheads) in a paramural body associated with cell wall appositions (asterisk) deposited by an intact epidermal cell. (C) A multivesicular body (MVB) in contact with a paramural body (PMB) (a nonmedian section) associated with cell wall appositions (asterisk) deposited by an intact mesophyll cell adjacent to a hypersensitive mesophyll cell. Note that cell wall appositions deposit beside an intercellular space (IS). The arrows point to the tonoplast. (D) A paramural body (PMB) associated with cell wall appositions (asterisks) blocking plasmodesmata (in between two arrowheads) at the side of an intact mesophyll cell (MC) underlying a hypersensitive epidermal cell (EC*). The arrows point to the tonoplast. CV, central vacuole; CW, cell wall; MB, microbody. Bars, 1µm.Open in a separate windowFigure 2Hypothetical diagram of delivery of endocytosed cell surface materials via MVBs into the central vacuole or the extracellular space where intact barley cells deposit cell wall appositions. (A) Deposition of cell wall appositions (asterisk) beneath powdery mildew penetration attempts. AGT, appressorial germ tube; PP, penetration peg. (B) Deposition of cell wall appositions (asterisks) against constricted plasmodesmata (PD) between a hypersensitive epidermal cell (EC) penetrated by the powdery mildew fungus and an underlying mesophyll cell (MC). H, haustorium. Arrows and numbers show pathways of vesicle trafficking. 1, Secretion of Golgi-derived vesicles containing newly synthesized materials; G, Golgi body; TGN, trans-Golgi network; 2, Endocytosis of cell surface materials from coated pits (coated open circles) via coated vesicles (coated circles) to multivesicular bodies (MVB); 3, Delivery of endocytosed materials for degradation inside the central vacuole (CV) via membrane fusion between MVBs and the tonoplast (T); small broken circles, vesicles in degradation; 4, Delivery of endocytosed materials for degradation inside the central vacuole via engulfment of MVBs by the tonoplast; large broken circles; MVB limiting membranes in degradation; 5, delivery of endocytosed materials into the extracellular space for deposition of cell wall appositions (asterisks) via membrane fusion between MVBs and the plasma membrane (PM). CW, cell wall; PMB, paramural body. PD0, 1, 2, 3 and 4 represent stages of plugging plasmodesmata. PD0, open plasmodesmata between two intact mesophyll cells (MC) subjacent to the hypersensitive epidermal cell (EC); PD1, constriction of plasmodesmata by callose (grey dots) deposition at plasmodesmal neck region; PD2, constricted plasmodesmata associated with plasmodesma-targeted secretion; PD3, further blocking of plasmodesmata by deposition of cell wall appositions; PD4, completely blocked plasmodesmata.Earlier than the discovery in animal cell systems,4 it was proposed in two independent papers in 1967 that the fusion of MVBs with the plasma membrane might result in the release of small vesicles into the extracellular space in fungi and in higher plants.10,11 Several lines of evidence support the occurrence of MVB-mediated secretion of exosome-like vesicles in plants. First, vesicles of the same morphology as MVB internal vesicles have been observed in extracellular spaces or paramural spaces in various types of plant cells in various plant species by TEM.12 An early study on endocytosis by soybean protoplasts also showed small extracellular vesicles attaching on the plasma membrane.8 Second, cooccurrence of MVBs and paramural vesicles has been observed in processes of cell proliferation, cell differentiation, and cell response to abiotic and biotic stress. Examples are cell plate formation,13,14 secondary wall thickening,15,16 cold hardness,17,18 and deposition of cell wall appositions upon pathogen attack.5,6,19–21 Third, identical molecular components, such as arabinogalactan proteins22,23 and peroxidases,6 have been immunolocalized in both MVBs and paramural bodies. Despite these pieces of evidence, a conclusive demonstration of MVB-mediated secretion of exosomes in plants requires further exploration.The presently available experimental systems, approaches, and membrane markers may allow future demonstration of MVB-mediated secretion of exosomes in plants. Recent in vivo real-time observation and colocalization of cell surface and endosomal markers have already revealed that endosomes filled with endocytosed preexisting cell wall and plasma membrane materials are rapidly delivered to cytokinetic spaces to form cell plates in dividing tobacco, Arabidopsis, and maize cells.24 Because TEM observed paramural bodies attaching to cell plates13 and MVBs in the vicinity of cell plates during all stages of cell plate formation,14,25,26 MVBs and paramural bodies may participate in delivery of endocytosed building blocks to cell plates. Jiang''s and Robinson''s labs together developed a transgenic tobacco BY-2 cell line stably expressing a YFP-labeled vacuolar sorting receptor protein and antibodies against the vacuolar sorting receptor protein localized to the limiting membrane of MVBs.9 These tools together with live cell imaging and immunoelectron microscopy may allow visualization of MVB-fusion to the new plasma membrane, of vacuolar sorting receptors in both the limiting membrane of MVBs and the new plasma membrane, and of identical cell plate components in both internal vesicles of MVBs and paramural vesicles.In spite of obvious differences in plant and animal cytokinesis, the generation of cell plates by cell-plate-directed fusion of endosomes resembles the plugging of midbody canals by midbody-directed endosomes to separate daughter cells at the terminal phase of animal cytokinesis.27 Likely, functional similarities of the fusion between endosomal MVBs and the plasma membrane to eliminate unwanted cell contents may also exist in maturation of mammalian red blood cells and plant sieve elements in the sense that the fusion of MVBs with the plasma membrane may occur during maturation of the latter.28 On the other hand, although plant cells may secrete MVB-derived exosomes in defense response upon pathogen attack,5,6 plant cell walls rule out the direct intercellular communication during the immune response mediated by exosomes in the circulation of mammals.3 In contrast, plasmodesma-directed secretion of exosomes would block the cell-to-cell communication between hypersensitive cells and their neighboring cells during hypersensitive response.5 Further exploration will lead us to a better understanding of similarities and differences of exosome secretion between plants and animals. 相似文献
33.
Kathryn E. Crow Terence J. Braggins Michael J. Hardman 《Archives of biochemistry and biophysics》1983,225(2):621-629
Cytosolic malate dehydrogenase from human liver was isolated and its physical and kinetic properties were determined. The enzyme had a molecular weight of 72,000 ± 2000 and an amino acid composition similar to those of malate dehydrogenases from other species. The kinetic behaviour of the enzyme was consistent with an Ordered Bi Bi mechanism. The following values (μm) of the kinetic parameters were obtained at pH 7.4 and 37 °C: Ka, 17; Kia, 3.6; Kb, 51; Kib, 68; Kp, 770; Kip, 10,700; Kq, 42; Kiq, 500, where a, b, p, and q refer to NADH, oxalacetate, malate, and NAD+, respectively. The maximum velocity of the enzyme in human liver homogenates was 102 μmol/min/g wet wt of liver for oxalacetate reduction and 11.2 μmol/min/g liver for malate oxidation at pH 7.4 and 37 °C. Calculations using these parameters showed that, under conditions in vivo, the rate of NADH oxidation by the enzyme would be much less than the maximum velocity and could be comparable to the rate of NADH production during ethanol oxidation in human liver. The rate of NADH oxidation would be sensitive to the concentrations of NADH and oxalacetate; this sensitivity can explain the change in cytosolic redox state during ethanol metabolism in human liver. 相似文献
34.
35.
Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases 总被引:2,自引:1,他引:2 下载免费PDF全文
The structural maintenance of chromosomes (SMC) proteins are essential for successful chromosome transmission during replication and segregation of the genome in all organisms. SMCs are generally present as single proteins in bacteria, and as at least six distinct proteins in eukaryotes. The proteins range in size from approximately 110 to 170 kDa, and each has five distinct domains: amino- and carboxy-terminal globular domains, which contain sequences characteristic of ATPases, two coiled-coil regions separating the terminal domains and a central flexible hinge. SMC proteins function together with other proteins in a range of chromosomal transactions, including chromosome condensation, sister-chromatid cohesion, recombination, DNA repair and epigenetic silencing of gene expression. Recent studies are beginning to decipher molecular details of how these processes are carried out. 相似文献
36.
CMA Iwegbue OV Beecroft JE Ogala FE Egobueze GO Tesi GE Nwajei 《African Journal of Aquatic Science》2018,43(3):241-253
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr. 相似文献
37.
Electrical and adaptive properties of rod photoreceptors in bufo marinus. I. Effects of altered extracellular Ca(2+) levels 下载免费PDF全文
The effects of altering extracellular Ca(2+) levels on the electrical and adaptive properties of toad rods have been examined. The retina was continually superfused in control (1.6 mM Ca(2+)) or test ringer’s solutions, and rod electrical activity was recorded intracellularly. Low-calcium ringer’s (10(-9)M Ca(2+)) superfused for up to 6 min caused a substantial depolarization of the resting membrane potential, an increase in light-evoked response amplitudes, and a change in the waveform of the light-evoked responses. High Ca(2+) ringer’s (3.2 mM) hyperpolarized the cell membrane and decreased response amplitudes. However, under conditions of either low or high Ca(2+) superfusion for up to 6 min, in both dark-adapted and partially light-adapted states, receptor sensitivity was virtually unaffected; i.e., the V-log I curve for the receptor potential was always located on the intensity scale at a position predicted by the prevailing light level, not by Ca(2+) concentration. Thus, we speculate that cytosol Ca(2+) concentration is capable of regulating membrane potential levels and light-evoked response amplitudes, but not the major component of rod sensitivity. Low Ca(2+) ringer’s also shortened the period of receptor response saturation after a bright but nonbleaching light flash, hence accelerating the onset of both membrane potential and sensitivity recovery during dark adaptation.
Exposure of the retina to low Ca(2+) (10(-9)M) ringer’s for long periods (7-15 min) caused dark-adapted rods to lose responsiveness. Response amplitudes gradually decreased, and the rods became desensitized. These severe conditions of low Ca(2+) caused changes in the dark-adapted rod that mimic those observed in rods during light adaptation. We suggest that loss of receptor sensitivity during prolonged exposure to low Ca(2+) ringer’s results from a decrease of intracellular (intradisk) stores of Ca(2+); i.e., less Ca(2+) is thereby released per quantum catch.
相似文献38.
39.
By means of indirect double immunofluorescent staining,the coordination of PI antigen and perichromonucleolin(PCN),the constituent of nuclear periphery and nucleolus respectively,in the assembly and disassembly of chromosome pellicle during mitosis was studied.It was found that in 3T3 cells,during mitosis PI antigen began to coat the condensing chromosome surface earlier than PCN did.However,both of them completed their coating on chromosome at approximately the same stage of mitosis,prometaphase metaphase,The dissociation of mitosis,Prometaphase metaphase.The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took place also ahead of that of PCN,At early telophase PI antigen had been extensively involved in the formation of nuclear periphery,while PCN remained in association with the surface of decondensing chromosomes.At late telophase,when PI antigen was localized in an fairly well formed nuclear periphery,PCN was in a stage of forming prenucleolar bodies. 相似文献
40.
The volatile components of 25 taxa of the liverwort family Frullaniaceae from New Zealand, Australia and South America have been analyzed by GC-MS. The present Frullania species are chemically divided into five major types: (1) sesquiterpene lactones, (2) sesquiterpene lactones-bibenzyls, (3) bibenzyls, (4) 2-alkanone and (5) triterpene types; the latter two chemo-types are newly proposed for the genus. Schusterella chevalierii, belonging to the Frullaniaceae, is closely related chemically to the sesquiterpene lactone type of the Frullania species since it elaborates two eudesmanolides, beta-cyclocostunolide and dihydro-beta-cyclocostunolide as major components. 相似文献