全文获取类型
收费全文 | 75篇 |
免费 | 11篇 |
专业分类
86篇 |
出版年
2018年 | 2篇 |
2017年 | 3篇 |
2015年 | 5篇 |
2013年 | 3篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 5篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 7篇 |
1996年 | 3篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1977年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有86条查询结果,搜索用时 15 毫秒
11.
Eoghan M Cunnane John JE Mulvihill Hilary E Barrett Michael T Walsh 《Biomedical engineering online》2015,14(Z1):S7
Background
Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.Methods
Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.Results
Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.Conclusions
Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.12.
Baart GJ Zomer B de Haan A van der Pol LA Beuvery EC Tramper J Martens DE 《Genome biology》2007,8(7):R136
Background
Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. 相似文献13.
14.
A flux analysis of glucose metabolism in the filamentous fungus Rhizopus oryzae was achieved using a specific radioactivity curve-matching program, TFLUX. Glycolytic and tricarboxylic acid cycle intermediates labeled through the addition of extracellular [U-14C]glucose were isolated and purified for specific radioactivity determinations. This information, together with pool sizes and the rates of glucose utilization and end product production, provided input for flux maps of the metabolic network under two different experimental conditions. Based upon the flux analysis of this system, a mutant of R. oryzae with higher lactate and lower ethanol yields than the parent was sought for and found. 相似文献
15.
M Matsuda A Tazumi S Kagawa T Sekizuka O Murayama JE Moore BC Millar 《BMC veterinary research》2006,2(1):1-4
Background
At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences.Results
Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences.Conclusion
High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. 相似文献16.
Phylogenomic species delimitation and host‐symbiont coevolution in the fungus‐farming ant genus Sericomyrmex Mayr (Hymenoptera: Formicidae): ultraconserved elements (UCEs) resolve a recent radiation 下载免费PDF全文
ANA JEŠOVNIK JEFFREY SOSA‐CALVO MICHAEL W. LLOYD MICHAEL G. BRANSTETTER FERNANDO FERNÁNDEZ TED R. SCHULTZ 《Systematic Entomology》2017,42(3):523-542
Ants in the Neotropical genus Sericomyrmex Mayr cultivate fungi for food. Both ants and fungi are obligate, coevolved symbionts. The taxonomy of Sericomyrmex is problematic because the morphology of the worker caste is generally homogeneous across all of the species within the genus, species limits are vague, and the relationships between them are unknown. We used ultraconserved elements (UCEs) as genome‐scale markers to reconstruct evolutionary history and to infer species boundaries in Sericomyrmex. We recovered an average of ~990 UCE loci for 88 Sericomyrmex samples from across the geographical range of the genus as well as for five outgroup taxa. Using maximum likelihood and species‐tree approaches, we recovered nearly identical topologies across datasets with 50–95% matrix completeness. We identify nine species‐level lineages in Sericomyrmex, including two new species. This is less than the previously described 19 species, even accounting for two species for which we had no UCE samples, which brings the total number of Sericomyrmex species to 11. Divergence‐dating analyses recovered 4.3 Ma as the crown‐group age estimates for Sericomyrmex, indicating a recent, rapid radiation. We also sequenced mitochondrial cytochrome oxidase subunit I (COI) for 125 specimens. Resolution and support for clades in our COI phylogeny are weak, indicating that COI is not an appropriate species‐delimitation tool. However, taxa within species consistently cluster together, suggesting that COI is useful as a species identification (‘DNA barcoding’) tool. We also sequenced internal transcribed spacer (ITS) and large subunit (LSU) for 32 Sericomyrmex fungal cultivars. The fungal phylogeny confirms that Sericomyrmex fungi are generalized higher‐attine cultivars, interspersed with Trachymyrmex‐associated fungal species, indicating cultivar sharing and horizontal transfer between these two genera. Our results indicate that UCEs offer immense potential for delimiting and resolving relationships of problematic, recently diverged species. 相似文献
17.
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b ( Cyt b ), and for up to two nuclear genes, heat shock cognate 70 ( HSC70 ) and aminopeptidase N intron ( APN54 ). We found that the mean level of genetic diversity and long-term effective population sizes ( N e ) were significantly greater for two species, Littorina scutulata and L. plena , that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata , that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata , showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species. 相似文献
18.
Protein domains are generally thought to correspond to units of evolution. New research raises questions about how such domains are defined with bioinformatics tools and sheds light on how evolution has enabled partial domains to be viable.With the rapid expansion in the number of determined protein sequences - over 92 million in UniProt in March 2015 - an ever-increasing number of biologists are using bioinformatics tools for annotation of these sequences. One widely used strategy is to identify occurrences of Pfam families within the sequence of interest [1]. A Pfam family is a multiple sequence alignment of the occurrences of a particular domain both in different species and in different regions of the same protein. The concept underpinning Pfam is that proteins typically comprise one or more domains (regions), each of which is an evolutionary unit that generally has a well-defined biological function. A significant sequence similarity between a query protein and a Pfam family provides the basis for annotations. Two recent articles [2,3] in Genome Biology evaluate the implications of having the query sequence only matching part of a Pfam family, which is an intriguing finding, given that a Pfam family is considered to be an evolutionary unit. 相似文献
19.
Observation of ovulate cones at the time of pollination in the southern coniferous family Podocarpaceae demonstrates a distinctive method of pollen capture, involving an extended pollination drop. Ovules in all genera of the family are orthotropous and single within the axil of each fertile bract. In Microstrobus and Phyllocladus ovules are erect (i.e., the micropyle directed away from the cone axis) and are not associated with an ovule-supporting structure (epimatium). Pollen in these two genera must land directly on the pollination drop in the way usual for gymnosperms, as observed in Phyllocladus. In all other genera, the ovule is inverted (i.e., the micropyle is directed toward the cone axis) and supported by a specialized ovule-supporting structure (epimatium). In Saxegothaea there is no pollination drop and gametes are delivered to the ovule by pollen tube growth. Pollination drops were observed in seven of the remaining genera. In these genera the drop extends over the adjacent bract surface or cone axis and can retain pollen that has arrived prior to drop secretion (“pollen scavenging”). The pollen floats upward into the micropylar cavity. The configuration of the cone in other genera in which a pollination drop has not yet been observed directly suggests that pollen scavenging is general within the family and may increase pollination efficiency by extending pollination in space and time. Increased pollination efficiency may relate to the reduction of ovule number in each cone, often to one in many genera, a derived condition. A biological perspective suggests that animal dispersal of large seeds may be the ultimate adaptive driving force that has generated the need for greater pollination efficiency. 相似文献
20.