首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   206篇
  1546篇
  2022年   16篇
  2021年   35篇
  2019年   13篇
  2018年   19篇
  2017年   17篇
  2016年   37篇
  2015年   49篇
  2014年   42篇
  2013年   41篇
  2012年   68篇
  2011年   66篇
  2010年   54篇
  2009年   52篇
  2008年   51篇
  2007年   42篇
  2006年   43篇
  2005年   45篇
  2004年   48篇
  2003年   39篇
  2002年   47篇
  2001年   41篇
  2000年   48篇
  1999年   29篇
  1998年   27篇
  1997年   17篇
  1995年   14篇
  1994年   15篇
  1993年   18篇
  1992年   23篇
  1991年   13篇
  1990年   27篇
  1989年   35篇
  1988年   21篇
  1987年   17篇
  1986年   24篇
  1985年   23篇
  1984年   24篇
  1983年   14篇
  1981年   18篇
  1979年   14篇
  1978年   16篇
  1977年   19篇
  1976年   16篇
  1975年   16篇
  1974年   18篇
  1973年   23篇
  1972年   18篇
  1971年   18篇
  1970年   14篇
  1967年   15篇
排序方式: 共有1546条查询结果,搜索用时 15 毫秒
61.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   
62.
Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations.  相似文献   
63.
64.
65.
66.
This paper describes a high yielding coupled enzymatic reaction using Bacillus halodurans purine nucleoside phosphorylase (PNP) and E. coli uridine phosphorylase (UP) for synthesis of 5-methyluridine (5-MU) by transglycosylation. Key parameters such as reaction temperature, pH, reactant loading, reactor configuration and enzyme loading were investigated. A guanosine conversion of 95% and a 5-MU yield of 85% were achieved at 1 l scale, with a productivity of 10 g l−1 h−1.  相似文献   
67.
68.
The COVID-19 pandemic has presented significant challenges and implications for the sports community. Thus, this study aimed to describe the prevalence of COVID-19 in Brazilian athletes and identify the epidemiological, clinical, athletic, life and health factors associated with the disease in these individuals. A cross-sectional study was performed involving 414 athletes from 22 different sports using an online questionnaire from August to November 2020. The association between the athletes’ characteristics and COVID-19 was evaluated using a logistic regression model. The prevalence of COVID-19 was 8.5%, although only 40% of athletes reported having been tested. Being under 27 years of age (3-fold), having children (~5-fold), having a teammate test positive for COVID-19 (2.5-fold), and smoking (14-fold) were associated with a possible higher risk of disease. Almost 20% of athletes self-reported musculoskeletal injuries during the period of the pandemic that was studied. Athletes with a university education (P = 0.02), a profession other than sports (P < 0.001), those from a low-income family (P = 0.01), and public health system users (P = 0.04) were significantly less frequently tested for COVID-19, whereas international competitors, athletes who received a wage, and athletes who had a teammate who tested positive for COVID-19 were 2-, 3-, and 15-fold more likely to be tested for COVID-19, respectively. Approximately 26% of the athletes who tested negative or were untested reported more than three characteristic COVID-19 symptoms, and 11% of athletes who tested positive for COVID-19 were asymptomatic. The identification of modifiable (have children, smoking, and teammates positively tested) and non-modifiable (age under 27 years) factors related to COVID-19 in athletes can contribute to implementing surveillance programmes to decrease the incidence of COVID-19 in athletes and its negative impacts in sports.  相似文献   
69.
S T Brady  R J Lasek 《Cell》1981,23(2):515-523
The axonal transport of two soluble enzymes of intermediary metabolism was evaluated: the nerve-specific form of the glycolytic enzyme enolase (NSE) and the brain isozyme of creatine phosphokinase (CPK). Previously, little was known about the intracellular movements of the soluble proteins of the cell. Although the soluble enzymes of glycolysis and other pathways of intermediary metabolism have been thought to be freely diffusing in the cytosol, many are required in the axonal extremities of the neuron and must be transported to the sites of utilization. Comigration of purified enzymes with radioactive polypeptides associated with specific rate components of axonal transport in two-dimensional gel electrophoresis indicates that both NSE and CPK move in the axon solely as part of the group of proteins known as slow component b (SCb) at a rate of 2 mm/day. Peptide mapping following limited proteolysis confirmed identification of NSE and CPK in SCb. Materials associated with SCb have been shown to move coherently along the axon and to behave as a discrete cellular structure, the axoplasmic matrix. Association of two soluble enzymes, NSE and CPK, with the SCb complex of proteins requires a reevaluation of the assumption that these and other soluble proteins of the axon are freely diffusible.  相似文献   
70.
Mutagenesis experiments suggest that Asp79 in cellulase Cel6A (E2) from Thermobifida fusca has a catalytic role, in spite of the fact that this residue is more than 13 A from the scissile bond in models of the enzyme-substrate complex built upon the crystal structure of the protein. This suggests that there is a substantial conformational shift in the protein upon substrate binding. Molecular mechanics simulations were used to investigate possible alternate conformations of the protein bound to a tetrasaccharide substrate, primarily involving shifts of the loop containing Asp79, and to model the role of water in the active site complex for both the native conformation and alternative low-energy conformations. Several alternative conformations of reasonable energy have been identified, including one in which the overall energy of the enzyme-substrate complex in solution is lower than that of the conformation in the crystal structure. This conformation was found to be stable in molecular dynamics simulations with a cellotetraose substrate and water. In simulations of the substrate complexed with the native protein conformation, the sugar ring in the -1 binding site was observed to make a spontaneous transition from the (4)C(1) conformation to a twist-boat conformer, consistent with generally accepted glycosidase mechanisms. Also, from these simulations Tyr73 and Arg78 were found to have important roles in the active site. Based on the results of these various MD simulations, a new catalytic mechanism is proposed. Using this mechanism, predictions about the effects of changes in Arg78 were made which were confirmed by site-directed mutagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号