首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4528篇
  免费   471篇
  国内免费   3篇
  5002篇
  2023年   21篇
  2022年   43篇
  2021年   79篇
  2020年   48篇
  2019年   66篇
  2018年   69篇
  2017年   68篇
  2016年   118篇
  2015年   181篇
  2014年   195篇
  2013年   241篇
  2012年   315篇
  2011年   319篇
  2010年   178篇
  2009年   168篇
  2008年   234篇
  2007年   243篇
  2006年   239篇
  2005年   201篇
  2004年   206篇
  2003年   196篇
  2002年   183篇
  2001年   72篇
  2000年   68篇
  1999年   65篇
  1998年   86篇
  1997年   45篇
  1996年   47篇
  1995年   41篇
  1994年   41篇
  1993年   40篇
  1992年   57篇
  1991年   69篇
  1990年   42篇
  1989年   54篇
  1988年   46篇
  1987年   40篇
  1986年   46篇
  1985年   37篇
  1984年   44篇
  1983年   30篇
  1982年   40篇
  1981年   24篇
  1980年   27篇
  1978年   22篇
  1977年   19篇
  1975年   21篇
  1974年   33篇
  1973年   20篇
  1966年   21篇
排序方式: 共有5002条查询结果,搜索用时 15 毫秒
61.
The Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na(+) balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl(-)-dependent (22)Na(+) uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC.  相似文献   
62.
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.  相似文献   
63.
64.
Down syndrome (DS) results in an overproduction of amyloid‐β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12–30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre‐clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid‐based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.  相似文献   
65.
Proteolytic processing of amyloid-β precursor protein (APP) by beta-site APP cleaving enzyme 1 (BACE1) is the initial step in the production of amyloid beta (Aβ), which accumulates in senile plaques in Alzheimer’s disease (AD). Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA) proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα), sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.  相似文献   
66.
Precise signaling by the T cell receptor (TCR) is crucial for a proper immune response. To ensure that T cells respond appropriately to antigenic stimuli, TCR signaling pathways are subject to multiple levels of regulation. Sts-1 negatively regulates signaling pathways downstream of the TCR by an unknown mechanism(s). Here, we demonstrate that Sts-1 is a phosphatase that can target the tyrosine kinase Zap-70 among other proteins. The X-ray structure of the Sts-1 C terminus reveals that it has homology to members of the phosphoglycerate mutase/acid phosphatase (PGM/AcP) family of enzymes, with residues known to be important for PGM/AcP catalytic activity conserved in nature and position in Sts-1. Point mutations that impair Sts-1 phosphatase activity in vitro also impair the ability of Sts-1 to regulate TCR signaling in T cells. These observations reveal a PGM/AcP-like enzyme activity involved in the control of antigen receptor signaling.  相似文献   
67.
RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ~100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.  相似文献   
68.
69.
Oxidation of Amplex red (AR) by H(2)O(2) in the presence of horseradish peroxidase (HRP) gives rise to an intensely colored product, resorufin. This reaction has been frequently employed for measurements of low concentrations of H(2)O(2) in biological samples. In the current study, we show that alternative peroxidase substrates, such as p-hydroquinone, acetaminophen, anticancer mitoxantrone, and ametantrone, inhibit AR oxidation by consuming H(2)O(2) in a competitive process. In contrast, the anthracycline agents doxorubicin, daunorubicin, and 5-iminodaunorubicin are markedly less efficient as competitors in these reactions, as is salicylic acid. When [H(2)O(2)]>[AR], the generated resorufin was oxidized by HRP and H(2)O(2). In the presence of anthracyclines, this process was inhibited and occurred with a lag time, the duration of which depended on the concentration of anthracycline. We propose that the mechanism of this inhibition is due to the antioxidant activity of anthracyclines involving the reduction of the resorufin-derived phenoxyl radical by the drugs' hydroquinone moiety back to resorufin. In addition to HRP, lactoperoxidase, myeloperoxidase, and HL-60 cells, naturally rich in myeloperoxidase, also supported these reactions. Results of this study suggest that extra caution is needed when using AR to measure cellular H(2)O(2) in the presence of alternative peroxidase substrates. They also demonstrate that the anticancer anthracyclines may function as antioxidants.  相似文献   
70.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号