首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5717篇
  免费   635篇
  6352篇
  2022年   52篇
  2021年   90篇
  2020年   56篇
  2019年   76篇
  2018年   77篇
  2017年   74篇
  2016年   128篇
  2015年   212篇
  2014年   228篇
  2013年   290篇
  2012年   375篇
  2011年   384篇
  2010年   216篇
  2009年   211篇
  2008年   280篇
  2007年   305篇
  2006年   305篇
  2005年   241篇
  2004年   257篇
  2003年   234篇
  2002年   234篇
  2001年   111篇
  2000年   110篇
  1999年   106篇
  1998年   101篇
  1997年   49篇
  1996年   60篇
  1995年   46篇
  1994年   46篇
  1993年   58篇
  1992年   84篇
  1991年   90篇
  1990年   68篇
  1989年   72篇
  1988年   76篇
  1987年   62篇
  1986年   59篇
  1985年   52篇
  1984年   60篇
  1983年   48篇
  1982年   54篇
  1981年   35篇
  1980年   39篇
  1979年   30篇
  1978年   32篇
  1976年   30篇
  1975年   33篇
  1974年   46篇
  1973年   30篇
  1966年   32篇
排序方式: 共有6352条查询结果,搜索用时 15 毫秒
101.
Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or “empty” capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.  相似文献   
102.
DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.  相似文献   
103.
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.  相似文献   
104.
Drosophila melanogaster exhibit an increase in fecundity and a decrease in length of life and starvation resistance when the diet is enriched through the addition of live yeast. It has been proposed that this represents a necessary energetic trade-off between reproductive and somatic functions. We examined the metabolic aspects of this trade-off. We measured egg production, dry wt, somatic lipid and carbohydrate storage, and metabolic rate in response to changing amounts of live dietary yeast. These variables were measured in five replicate populations selected for postponed aging and five replicate short lived control populations. We find that all ten populations show an overall increase in egg production and decrease in the amount of stored metabolites in the presence of increasing amounts of yeast. All populations increase metabolic rate in response to increasing amounts of live dietary yeast. The energetics of this phenomenon suggest that increased egg production results from increased acquisition of nutrients available in yeast with only a small redirection of resources from storage to egg production.  相似文献   
105.
106.
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi‐model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi‐model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.  相似文献   
107.
Frontotemporal lobar degeneration (FTLD) is the second leading cause of dementia in individuals under age 65. In many patients, the predominant pathology includes neuronal cytoplasmic or intranuclear inclusions of ubiquitinated TAR DNA binding protein 43 (FTLD‐TDP). Recently, a genome‐wide association study identified the first FTLD‐TDP genetic risk factor, in which variants in and around the TMEM106B gene (top SNP rs1990622) were significantly associated with FTLD‐TDP risk. Intriguingly, the most significant association was in FTLD‐TDP patients carrying progranulin (GRN) mutations. Here, we investigated to what extent the coding variant, rs3173615 (p.T185S) in linkage disequilibrium with rs1990622, affects progranulin protein (PGRN) biology and transmembrane protein 106 B (TMEM106B) regulation. First, we confirmed the association of TMEM106B variants with FTLD‐TDP in a new cohort of GRN mutation carriers. We next generated and characterized a TMEM106B‐specific antibody for investigation of this protein. Enzyme‐linked immunoassay analysis of progranulin protein levels showed similar effects upon T185 and S185 TMEM106B over‐expression. However, over‐expression of T185 consistently led to higher TMEM106B protein levels than S185. Cycloheximide treatment experiments revealed that S185 degrades faster than T185 TMEM106B, potentially due to differences in N‐glycosylation at residue N183. Together, our results provide a potential mechanism by which TMEM106B variants lead to differences in FTLD‐TDP risk.

  相似文献   

108.
Maternal smoking during pregnancy continues to represent a major public health concern. Nicotine is extremely harmful to the developing fetus through many different mechanisms, and the harms increase with later gestational age at exposure. Pregnancies complicated by maternal nicotine use are more likely to have significant adverse outcomes. Nicotine‐exposed children tend to have several health problems throughout their lives, including impaired function of the endocrine, reproductive, respiratory, cardiovascular, and neurologic systems. Poor academic performance and significant behavioral disruptions are also common, including ADHD, aggressive behaviors, and future substance abuse. To diminish the adverse effects from cigarette smoking, some women are turning to electronic cigarettes, a new trend that is increasing in popularity worldwide. They are largely perceived as being safer to use in pregnancy than traditional cigarettes, although there is not adequate evidence to support this claim. At this time, electronic cigarette use during pregnancy cannot be recommended. Birth Defects Research (Part C) 108:181–192, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
109.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   
110.
This Letter details the synthesis and evaluation of imidazo[4,5-b]pyridines as inhibitors of B-Raf kinase. These compounds bind in a DFG-in, αC-helix out conformation of B-Raf, which is a binding mode associated with significant kinase selectivity. Structure–activity relationship studies involved optimization of the ATP-cleft binding region of these molecules, and led to compound 23, an inhibitor with excellent enzyme/cell potency, and kinase selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号