首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5059篇
  免费   535篇
  5594篇
  2023年   22篇
  2022年   49篇
  2021年   90篇
  2020年   52篇
  2019年   69篇
  2018年   74篇
  2017年   76篇
  2016年   128篇
  2015年   198篇
  2014年   216篇
  2013年   264篇
  2012年   347篇
  2011年   348篇
  2010年   187篇
  2009年   184篇
  2008年   262篇
  2007年   263篇
  2006年   265篇
  2005年   221篇
  2004年   225篇
  2003年   209篇
  2002年   212篇
  2001年   82篇
  2000年   87篇
  1999年   80篇
  1998年   89篇
  1997年   49篇
  1996年   49篇
  1995年   43篇
  1994年   46篇
  1993年   46篇
  1992年   71篇
  1991年   82篇
  1990年   63篇
  1989年   66篇
  1988年   54篇
  1987年   48篇
  1986年   56篇
  1985年   46篇
  1984年   46篇
  1983年   33篇
  1982年   45篇
  1981年   32篇
  1980年   34篇
  1978年   23篇
  1977年   24篇
  1975年   28篇
  1974年   38篇
  1973年   27篇
  1966年   26篇
排序方式: 共有5594条查询结果,搜索用时 0 毫秒
901.
We investigated intracerebral hemorrhage (ICH)-induced lateral migration of neuroblasts and the mechanism underlying this migration. ICH model was induced by collagenase injection into the striatum of adult wild-type and osteopontin (OPN) knockout mice. In the wild-type mice, the lateral migration of neuroblasts from the ipsislateral subventricular zone (SVZ) towards the hematoma started at day 3 and continued up to day 28 after ICH. In addition to migrating towards the hematoma, neuroblasts also migrated to the area of ipsilateral striatum remote to the hematoma. The migrating neuroblasts were closely associated with activated astrocytes and blood vessels in the injured striatum. Following ICH, the expression of OPN was up-regulated in the ipsilateral striatum from day 1 to day 28. In vitro , OPN treatment did not affect the proliferation of neural progenitors, but enhanced the trans-well and radial migration of neural progenitors. In vivo , OPN deficiency did not affect the proliferation of neural progenitors in the SVZ. However, following ICH a significant decrease in lateral neuroblast migration was observed in the OPN knockout mice compared with the wild-type mice. These results suggest that increased OPN expression in the injured striatum plays a significant role in the lateral migration of neuroblasts following ICH.  相似文献   
902.
Mozambique tilapia, (Oreochromis mossambicus), are a euryhaline teleost and an important biological model species. Captive male tilapia frequently have high levels of the estrogen-induced yolk precursor protein vitellogenin (Vg), a common indicator of exposure to estrogenic compounds. Sex steroids are found in commercial fish diets, but relatively few studies have examined the relationship between commercial diets and Vg production. In a fasting experiment to ascertain a dietary role in male Vg production, plasma Vg was reduced to negligible levels after 2 weeks of fasting, while no change in estrogen receptor (ER) expression was seen. When male tilapia were fed a squid-based diet that replaced the commercial trout diet, plasma Vg was reduced to undetectable levels over 40 days, concomitant with significant reductions in hepatic expression of Vgs A, B, and C, and ERβ, compared with control fish fed commercial trout diet. Female tilapia fed the squid-based for 20 days had no change in these parameters. When male tilapia were fed a defined, soy-based diet, plasma Vg reduced to 20% of levels in fish given either commercial trout diet or a defined, fishmeal-based diet. Overall, results from these studies suggest that estrogens in a commercial trout diet induce vitellogenin production by increasing expression of Vg, but not ER genes in male tilapia.  相似文献   
903.
The direct competitive effects of exotic plants on natives are among the leading causes of plant extinctions worldwide. Allelopathy, one type of direct plant competition, has received relatively little research, particularly in aquatic and wetland systems, even though allelopathy can be a potent mechanism through which plant communities are structured. Typha angustifolia (narrow-leaved cattail) is an invasive exotic plant in North America that often forms monocultures in disturbed wetlands and is more invasive than native members of its genus. We tested whether T. angustifolia was allelopathic and whether it produced different biochemicals than a native congener by growing it with the native bulrush Bolboschoenus fluviatilis (river bulrush) in soil with and without activated carbon and by qualitatively and quantitatively comparing soluble phenolics produced in the roots of T. angustifolia and the native Typha latifolia (broad-leaved cattail). T. angustifolia had a strong allelopathic effect on B. fluviatilis, reducing the longest leaf length and root, shoot, and total biomass of B. fluviatilis. When the allelopathy of T. angustifolia was ameliorated by activated carbon, however, longest leaf length, ramet number, root biomass, shoot biomass, and total biomass of T. angustifolia were greatly reduced due to resource competition with B. fluviatilis. Furthermore, T. angustifolia produced different, but not more, soluble phenolics than T. latifolia suggesting that the identity of the phenolics is different between the two species rather than the concentrations. The allelopathic effects of T. angustifolia on a North American native wetland plant and its production of root biochemicals that appear to differ from those produced by a native congener are consistent with the possibility that T. angustifolia may use a novel allelochemical in its invasion of North American wetlands.  相似文献   
904.
There is a growing concern about the presence of pathogens in cattle manure and its implications on human and environmental health. The phytochemical-rich forage sainfoin (Onobrychis viciifolia) and purified phenolics (trans-cinnamic acid, p-coumaric acid, and ferulic acid) were evaluated for their ability to reduce the viability of pathogenic Escherichia coli strains, including E. coli O157:H7. MICs were determined using purified phenolics and acetone extracts of sainfoin and alfalfa (Medicago sativa), a non-tannin-containing legume. Ground sainfoin or pure phenolics were mixed with fresh cattle feces and inoculated with a ciprofloxacin-resistant strain of E. coli, O157:H7, to assess its viability at −20°C, 5°C, or 37°C over 14 days. Forty steers were fed either a sainfoin (hay or silage) or alfalfa (hay or silage) diet over a 9-week period. In the in vitro study, the MICs for coumaric (1.2 mg/ml) and cinnamic (1.4 mg/ml) acids were 10- to 20-fold lower than the MICs for sainfoin and alfalfa extracts. In the inoculated feces, the −20°C treatment had death rates which were at least twice as high as those of the 5°C treatment, irrespective of the additive used. Sainfoin was less effective than coumaric acid in reducing E. coli O157:H7 Cipr in the inoculated feces. During the animal trial, fecal E. coli numbers declined marginally in the presence of sainfoin (silage and hay) and alfalfa silage but not in the presence of hay, indicating the presence of other phenolics in alfalfa. In conclusion, phenolic-containing forages can be used as a means of minimally reducing E. coli shedding in cattle without affecting animal production.  相似文献   
905.
Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrPC) into a disease associated form (PrPSc). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrPC or a β-sheet rich, protease resistant form similar to PrPSc. Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrPSc from PrPC. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer’s, Huntington’s and Parkinson’s diseases.  相似文献   
906.
The synthesis and detailed enzymatic analysis of fluorescence resonance energy transfer (FRET)-based peptides as substrates for chymopapain are reported. The design of these substrates arose from a massively parallel high-throughput microarray screening process using peptide nucleic acid (PNA) encoding technology, allowing the identification of detailed substrate specificities of any protease. Two peptides so identified with chymopapain were observed to be excellent substrates with low micromolar Km values and turnover numbers on the order of hundreds per second. Mass spectroscopy studies showed unequivocally the specificity of chymopapain toward Ala, Pro, Val, and Lys for positions P4 to P1 while not presenting high specificity for residues in position P1′.  相似文献   
907.
We present an optimized high-throughput method for the characterization of 2-aminobenzamide (2-AB)-labeled N-glycans from recombinant immunoglobulin G (rIgG). This method includes an optimized sample preparation protocol involving microwave-assisted deglycosylation in conjunction with an automated sample cleanup strategy and a rapid resolution reverse-phase high-performance liquid chromatography (RRRP-HPLC) separation of labeled N-glycans. The RRRP-HPLC method permits generation of a comprehensive glycan profile using fluorescence detection in 45 min. In addition, the profiling method is directly compatible with electrospray ionization mass spectrometry (ESI-MS), allowing immediate and sensitive characterization of the glycan moiety by intact MS and tandem MS (MS/MS) fragmentation. We conservatively estimate an efficiency gain of fourfold with respect to the throughput capabilities of this optimized method as compared with traditional protocols (overnight deglycosylation, sample cleanup by graphitized carbon or cellulose cartridge, high-pH anion exchange chromatography, fraction collection, and processing for matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] MS analysis) for a single sample. Even greater gains are achieved when processing of multiple samples is considered.  相似文献   
908.
909.
910.
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号