首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   6篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   11篇
  2012年   11篇
  2011年   14篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1939年   1篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
61.
During meiosis, accurate chromosome segregation relies on homology to mediate chromosome pairing, synapsis, and crossover recombination. Crossovers are dependent upon formation and repair of double-strand breaks (DSBs) by homologous recombination (HR). In males of many species, sex chromosomes are largely hemizygous, yet DSBs are induced along nonhomologous regions. Here we analyzed the genetic requirements for meiotic DSB repair on the completely hemizygous X chromosome of Caenorhabditis elegans males. Our data reveal that the kinetics of DSB formation, chromosome pairing, and synapsis are tightly linked in the male germ line. Moreover, DSB induction on the X is concomitant with a brief period of pseudosynapsis that may allow X sister chromatids to masquerade as homologs. Consistent with this, neither meiotic kleisins nor the SMC-5/6 complex are essential for DSB repair on the X. Furthermore, early processing of X DSBs is dependent on the CtIP/Sae2 homolog COM-1, suggesting that as with paired chromosomes, HR is the preferred pathway. In contrast, the X chromosome is refractory to feedback mechanisms that ensure crossover formation on autosomes. Surprisingly, neither RAD-54 nor BRC-2 are essential for DSB repair on the X, suggesting that unlike autosomes, the X is competent for repair in the absence of HR. When both RAD-54 and the structure-specific nuclease XPF-1 are abrogated, X DSBs persist, suggesting that single-strand annealing is engaged in the absence of HR. Our findings indicate that alteration in sister chromatid interactions and flexibility in DSB repair pathway choice accommodate hemizygosity on sex chromosomes.  相似文献   
62.
The material properties of articular cartilage in the rabbit tibial plateau were determined using biphasic indentation creep tests. Cartilage specimens from matched-pair hind limbs of rabbits approximately 4 months of age and greater than 12 months of age were tested on two locations within each compartment using a custom built materials testing apparatus. A three-way ANOVA was used to determine the effect of leg, compartment, and test location on the material properties (aggregate modulus, permeability, and Poisson's ratio) and thickness of the cartilage for each set of specimens. While no differences were observed in cartilage properties between the left and right legs, differences between compartments were found in each set of specimens. For cartilage from the adolescent group, values for aggregate modulus were 40% less in the medial compartment compared to the lateral compartment, while values for permeability and thickness were greater in the medial compartment compared to the lateral compartment (57% and 30%, respectively). Values for Poisson's ratio were 19% less in the medial compartment compared to the lateral compartment. There was also a strong trend for thickness to differ between test locations. Similar findings were observed for cartilage from the mature group with values for permeability and thickness being greater in the medial compartment compared to the lateral compartment (66% and 34%, respectively). Values for Poisson's ratio were 22% less in the medial compartment compared to the lateral compartment.  相似文献   
63.
Methods of producing relevant and quantifiable load alterations in vivo with which to study load-induced cartilage degeneration analogous to osteoarthritis are limited. An animal model was used to investigate the effects of increased chronic loads on articular cartilage. Mature rabbits were randomized into one of three experimentally loaded groups and a fourth unoperated control group. A mechanical-loading device was skeletally fixed to the hind limb of animals in the loaded groups. Engaging the device resulted in an additional load of 0%, +22% or +44% body weight to the medial compartment of the experimental knee, while allowing normal joint function. Following a 12-week loading protocol, a creep-indentation test and needle probe test were used to determine the biphasic material properties and thickness of the cartilage at four locations of each femoral and tibial condyle of the experimental and contralateral limbs. Analyses of covariance were performed to compare outcome measures across the treatment groups. The effect of increased load was site and load-level specific with alterations of material properties and thickness most prominent in the posterior region of the medial compartment of the tibia. At this site, permeability increased 128% and thickness increased 28% in the +44% body weight group relative to the 0% body weight group. This model of altered chronic loading initiated changes in the material properties to the articular cartilage at the sites of increased load over 12-weeks that were consistent with early degenerative changes suggesting that increased tibio-femoral loading may be responsible for the alterations. This work begins to elucidate the chronic-load threshold and the time course of cartilage degeneration at different levels of altered loading.  相似文献   
64.
The combination of three-dimensional (3-D) models with dual fluoroscopy is increasingly popular for evaluating joint function in vivo. Applying these modalities to study knee motion with high accuracy requires reliable anatomical coordinate systems (ACSs) for the femur and tibia. Therefore, a robust method for creating ACSs from 3-D models of the femur and tibia is required. We present and evaluate an automated method for constructing ACSs for the distal femur and proximal tibia based solely on 3-D bone models. The algorithm requires no observer interactions and uses model cross-sectional area, center of mass, principal axes of inertia, and cylindrical surface fitting to construct the ACSs. The algorithm was applied to the femur and tibia of 10 (unpaired) human cadaveric knees. Due to the automated nature of the algorithm, the within specimen variability is zero for a given bone model. The algorithm’s repeatability was evaluated by calculating variability in ACS location and orientation across specimens. Differences in ACS location and orientation between specimens were low (<1.5 mm and <2.5°). Variability arose primarily from natural anatomical and morphological differences between specimens. The presented algorithm provides an alternative method for automatically determining subject-specific ACSs from the distal femur and proximal tibia.  相似文献   
65.
66.
To identify protein–protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP‐MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP‐tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross‐validation approach is employed to identify the most statistically significant protein–protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae’s mRNA translation proteins and complexes are identified.  相似文献   
67.
68.
Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F = 78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3 h after a single, 10 mg/kg, subcutaneous dose.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号